Во время своего пребывания в Иннсбруке Казевич обсудил с Квятом самые разные варианты экспериментов, и ученые пришли к заключению: в принципе, можно построить такую установку, где вероятность обнаружения «бомбы», никак ее не касаясь, окажется сколь угодно близка к 100 %! То есть, не существуют, по идее, никакие природные ограничения для создания аппаратуры, которая, например, давала бы изображение реального предмета, никак его при этом не освещая и не получая от него никакой информации.
Для следующего своего эксперимента Квят с сотрудниками (в числе которых был теперь и Казевич) построили установку, работавшую на другом принципе и использовавшую не просто отражающие и наполовину поглощающие зеркала, а зеркала, меняющие поляризацию падающих на них фотонов. Установка значительно усложнилась, но уже предварительные результаты опытов, проведенных в лаборатории в Лос-Аламосе, показали: вероятность обнаружения необнаружимого составляет 70 %. Квят и его сотрудники доказали (напомню: это было еще в середине девяностых годов прошлого века), что более чем две трети физических измерений могут быть бесконтактными (Kwiat et al., 1995).
Обратите внимание: речь уже не шла о том, существует ли многомирие по Эверетту, или это красивая, но бесполезная гипотеза. Задача теперь стояла — как можно эффективнее использовать многомирие на практике.
В физике очень часто случается так, что быстро преодолеваются первые, не самые трудные, препятствия, а потом тянутся годы (порой — десятилетия), пока удается добиться надежного, применимого на практике, эффекта.
Прошло более десяти лет, пока в экспериментах группы японских ученых Цегая и Намикаты (2010) удалось бесконтактным способом обнаружить до 88 % невидимых объектов, которых не коснулся ни один фотон. Тем временем бразильские ученые Сант-Анна Адонаи и Буэно Оттавио (Adonai & Ottavio, 2010) обобщили метод Элицура-Вайдмана и описали эксперимент, в котором для бесконтактных измерений использовали не фотоны, а волны Де-Бройля (и этот вариант еще более увеличил область бесконтактных измерений).
Пол Квят назвал метод бесконтактных измерений квантовой магией. Это действительно выглядит, будто магическое действо: способность видеть, не видя. Но на самом деле все необходимые идеи и возможности были уже заложены в квантовой физике, ведь природа квантовых измерений известна с тридцатых годов прошлого века, а теория Эверетта появилась в 1957 году — сто лет назад.
Блестящие эксперименты Квята, Цегая, Намикаты, Адонаи и Оттавио доказали вполне определенно: мы живем в эвереттовском многомирии.
Глава 4
Абсолютный антропный принцип
В 2013 году были опубликованы результаты измерений температуры реликтового излучения в разных точках неба (по данным космической обсерватории Plank), и неожиданно оказалось, что это излучение не так однородно, как представлялось прежде. Видны были странные области с пониженной температурой реликтового фона. Была выдвинута гипотеза (Kleban, Levi & Sigurdson, 2013): наша Вселенная столкнулась с другой, соседней, вселенной, результат этого столкновения мы и наблюдаем. Тогда еще не было понятно, о каком типе многомирия идет речь: выбор был между инфляционным или лоскутным (возможно, и ландшафтным) многомирием.
Многомировое описание мироздания позволило разобраться еще с одним противоречием, которое «путалось под ногами» ученых более чем полвека. это обнаруженная в середине ХХ века так называемая «тонкая подгонка» мировых постоянных, из-за которой существование человеческой цивилизации оказывалось настолько маловероятным явлением (если считать явление природным), что зарождение жизни за время существование Вселенной можно было считать попросту невозможным.
Первые упоминания о «тонкой подгонке» и о принципе, который впоследствии был назван антропным, можно найти в книге советского философа М. |