В самом начале устанавливается, что обратно-квадратичная зависимость силы притяжения эквивалентна Кеплеровым законам планетарного движения. На первый взгляд логическая эквивалентность Ньютонова закона трем законам Кеплера указывает на то, что Ньютон всего лишь переформулировал законы Кеплера и изложил их на языке сил. Но есть еще одна особенность – скорее предсказание, чем теорема. Ньютон, подобно Гуку до него, утверждает, что эти силы универсальны. Любое тело во Вселенной притягивает к себе любое другое тело. Это позволяет Ньютону сформулировать принципы, применимые ко всей Солнечной системе, и он подходит к задаче исследования системы из трех тел, движущихся под действием гравитационного притяжения.
Во второй книге разбирается движение в сопротивляющейся среде, включая и воздух. Рассматриваются гидростатика – равновесие плавающих тел – и сжимаемые жидкости. Исследование волн позволяет получить оценку скорости звука в воздухе – 1088 футов в секунду (331 м/с) – и закономерности ее изменения в зависимости от влажности. Современное значение этой скорости на уровне моря принимается равным 340 м/с. Завершается вторая книга критикой Декартовой теории образования Солнечной системы из вихрей.
Третья книга имеет подзаголовок «О системе мира»: в ней принципы, разработанные в первых двух книгах, применяются к Солнечной системе и астрономии. Приложения этих принципов поразительно подробны: неравномерности в движении Луны; движение спутников Юпитера, которых тогда было известно четыре; кометы; приливы; прецессия равноденствий; и особенно гелиоцентрическая теория, которую Ньютон сформулировал очень продуманно: «…общий центр тяжести Земли, Солнца и планет должен быть принят за центр мира… [и этот центр] или находится в покое, или же движется равномерно и прямолинейно». Оценивая отношение масс Солнца, Юпитера и Сатурна, он вычислил, что этот общий центр тяжести располагается очень близко к центру Солнца, при этом ошибка не превышает диаметр Солнца. Он был прав.
* * *
Обратно-квадратичный закон притяжения на самом деле первым заметил Ньютон. Кеплер ссылался на математическую зависимость такого типа в 1604 г., говоря о свете; он утверждал, что пучок световых лучей, расходящихся из одной точки, должен освещать сферу, площадь которой растет как квадрат ее радиуса. Если количество света сохраняется, яркость должна быть обратно пропорциональна квадрату расстояния. Он предложил аналогичный закон и для «тяготения», но под тяготением при этом он подразумевал гипотетическую силу, при помощи которой Солнце толкает планеты по орбитам; он был убежден, что сила эта обратно пропорциональна расстоянию. Измаил Буллиальд был с этим не согласен; он утверждал, что эта сила должна быть обратно пропорциональна квадрату расстояния.
Гравитационное притяжение, его универсальность и закон обратно-квадратичной зависимости в 1670 г., можно сказать, носились в воздухе. Кроме того, обратно-квадратичная зависимость – очень естественное соотношение, по аналогии с геометрией световых лучей. В лекции перед Королевским обществом в 1666 г. Роберт Гук сказал:
Я намерен изложить систему мира, весьма отличающуюся от всех до сих пор предложенных. Она основывается на следующих трех положениях. 1. Все небесные тела испытывают не только тяготение частей их к собственному истинному центру, но притягивают взаимно одно к другому в пределах своих сфер действия. 2. Все тела, совершающие простое движение, продолжат двигаться по прямой линии, если только не будут постоянно отклоняться от нее действием некоей внешней силы, побуждающей их описывать окружность, эллипс или какую-то иную кривую. 3. Это притяжение тем сильнее, чем ближе друг к другу находятся тела. Что же касается отношения, в котором эти силы уменьшаются с увеличением расстояния, то сам я, признаюсь, не определил его. |