|
Но он мог все же помочь своему протеже-вундеркинду. В 1788 г. Гаусс при помощи Бюттнера и его помощника Мартина Бартельса начал учиться в гимназии, где и приобрел вкус к лингвистике, изучив верхненемецкий и латынь.
Бартельс, знавший в Брауншвейге кое-кого из видных людей, рассказал им о талантах Гаусса. Рассказ о необыкновенном юноше дошел и до ушей герцога Карла-Вильгельма-Фердинанда Брауншвейг-Вольфенбюттельского, и в 1791 г., в возрасте 14 лет, Гаусс был удостоен личной герцогской аудиенции. Он был стеснителен и скромен – и невероятно умен. Герцог, в равной степени очарованный и впечатленный, пообещал выделить деньги на образование мальчика. В 1792 г. Гаусс на деньги герцога поступил в колледж Collegium Carolinum. В колледже его интерес к языкам, особенно классическим, значительно окреп. Герхард заявил, что подобные знания бесполезны в жизни и нечего тратить время на их приобретение, но вмешалась Доротея. Их сын должен получить наилучшее возможное образование, а оно включает в себя и греческий, и латынь. И точка.
Некоторое время Гаусс всерьез интересовался сразу двумя областями – математикой и языками. Он самостоятельно открыл (без доказательств) пять или шесть важных математических теорем, в том числе закон квадратичной взаимности в теории чисел, о котором я расскажу позже, и высказал гипотезу о простых числах, согласно которой количество простых чисел, меньших x, приблизительно равно x/log x. Эту гипотезу независимо друг от друга доказали в 1896 г. Жак Адамар и Шарль де ла Валле-Пуссен. В 1795 г. Гаусс оставил Брауншвейг, чтобы начать учебу в Университете Гёттингена. Его профессор Авраам Кестнер в основном писал учебники и энциклопедии и не занимался исследовательской работой. Гаусс был о нем невысокого мнения и не скрывал этого. Он уже уверенно двигался в направлении карьеры лингвиста, когда боги математики весьма наглядно пришли ему на помощь с семнадцатиугольником.
* * *
Чтобы понять, насколько радикальным было открытие Гаусса, нам нужно вернуться на две с лишним тысячи лет назад, в Древнюю Грецию. Евклид в «Началах» систематизировал и привел к единому виду теоремы великих греческих геометров. Он был ярым поборником логики и утверждал, что все должно быть доказано. Ну, почти все. С чего-то нужно начинать, и начинают обычно с предположений, которые не доказываются. Такие предположения Евклид подразделил на три типа: определения, общепринятые положения и постулаты. Мы сегодня называем утверждения двух последних типов аксиомами.
На базе таких предположений Евклид проработал значительную часть греческой геометрии, шаг за шагом. На наш современный взгляд, кое-каких допущений у него все же недоставало – довольно тонких допущений, таких как «если прямая проходит через некую точку внутри окружности, то эта прямая, если ее продолжить достаточно, должна с этой окружностью пересечься». Но если оставить мелочные придирки, Евклид проделал замечательную работу, выведя далеко идущие следствия из простых принципов.
Вершиной «Начал» стало доказательство того, что существует ровно пять правильных многогранников – объемных фигур, гранями которых являются правильные многоугольники, одинаково организованные в каждой вершине. Перечислим эти пять фигур: тетраэдр с четырьмя гранями – равносторонними треугольниками; куб с шестью квадратными гранями; октаэдр с восемью гранями – равносторонними треугольниками; додекаэдр – двенадцатигранник с правильными пятиугольниками в качестве граней; и икосаэдр с двадцатью гранями – равносторонними треугольниками. Отметим, что если вы являетесь Евклидом и настаиваете на логических доказательствах, то вы не сможете построить трехмерную геометрию додекаэдра, если предварительно не разобрались в двумерной геометрии правильного пятиугольника. В конце концов, додекаэдр построен из двенадцати правильных пятиугольников. |