Изменить размер шрифта - +
Во-вторых, 17 – простое число, что позволило Гауссу найти эту систему.

Любой знающий математик мог проследить за рассуждениями Гаусса после того, как тот показал верный путь, но никто другой даже не заподозрил, что Евклид в свое время назвал не все правильные многоугольники, которые можно построить.

Неплохо для девятнадцатилетнего юноши.

 

* * *

Благодаря финансовой помощи герцога Гаусс продолжал двигаться вперед семимильными шагами, особенно в теории чисел. С детства он умел молниеносно считать и мог мгновенно проделывать в уме сложные арифметические расчеты. В докомпьютерную эпоху такая способность была очень полезна. Она помогала ему быстро продвигаться вперед в теории чисел, и репутация молодого Гаусса заметно подросла, когда он написал один из самых известных исследовательских текстов в истории математики – «Арифметические исследования» (Disquisitiones Arithmeticae). Эта книга сделала для теории чисел то, что Евклид двумя тысячелетиями раньше сделал для геометрии. Благодаря субсидии, которую выделил пунктуальный герцог, книга вышла в 1801 г.; автор в ответ посвятил книгу спонсору.

Один из основных методов, используемых в книге, представляет собой типичный пример способности Гаусса синтезировать из массы неорганизованных и сложных результатов простые понятия. Сегодня мы называем этот метод модульной арифметикой. Многие ключевые результаты в теории чисел зиждутся на двух простых вопросах:

При каких условиях одно заданное число делится на другое?

Если не делится, то как связаны эти два числа?

Проведенное Ферма различие между 4k + 1 и 4k + 3 относится к этому же типу. Здесь речь идет о том, что произойдет, если разделить некое число на 4. Иногда оно делится нацело. Числа

0 4 8 12 16 20…

кратны четырем. Остальные четные числа

2 6 10 14 18…

не кратны. Мало того, каждое из них при делении на 4 дает остаток 2; то есть они представляют собой сумму числа, кратного 4, и «остатка» 2. Аналогично нечетные числа дают в остатке либо 1:

1 5 9 13 17 21…

либо 3:

3 7 11 15 19 23…

До того как Гаусс взял это дело в свои руки, обычно говорили, что эти последовательности содержат числа вида 4k, 4k + 1, 4k + 2 и 4k + 3, если расставить их в порядке возрастания остатков. Гаусс сказал иначе: это группы чисел, сравнимых с 0, 1, 2, 3 (или конгруэнтных 0, 1, 2, 3 соответственно) по модулю 4. Или, если вспомнить освященную временем латынь, modulo 4.

До сих пор все это только терминология, но главное здесь – структура. Если вы складываете два числа или перемножаете их и спрашиваете, с которым из чисел 0, 1, 2, 3 сравним (все по модулю 4) результат, то оказывается, ответ на этот вопрос зависит только от того, с какими из чисел сравнимы первоначально взятые вами числа. К примеру:

– если вы складываете числа, сравнимые с 2 и 3, то результат всегда сравним с 1;

– если вы перемножаете числа, сравнимые с 2 и 3, то результат всегда сравним с 2.

Посмотрим на примере. Число 14 сравнимо (по-прежнему все происходит по модулю 4) с 2, а число 23 – с 3. Их сумма равна 37 и должна быть сравнима с 1. Так и есть: 37 = 4 × 9 + 1. Произведение этих чисел равно 322 = 4 × 80 + 2.

Возможно, это звучит немного глуповато, но такая система позволяет нам отвечать на вопросы о делимости на 4 при помощи всего лишь этих четырех «классов сравнимости». Применим эту идею к простым числам, представляющим собой сумму двух полных квадратов. Любое целое число сравнимо (по модулю 4) с 0, 1, 2 или 3. Следовательно, их квадраты сравнимы с квадратами этих четырех чисел, то есть с 0, 1, 4 или 9, а те, в свою очередь, сравнимы с 0, 1, 0, 1 соответственно. Перед вами очень быстрый и очень простой способ доказать, что любой квадрат имеет вид 4k или 4k + 1, в старой терминологии.

Быстрый переход