Изменить размер шрифта - +
на пост директора Гёттингенской обсерватории.

К тому моменту Гаусс был женат на Иоганне Остгоф, но в 1809 г. она умерла, дав жизнь их второму сыну, который тоже вскоре умер. Гаусс был подавлен этой семейной трагедией, но продолжал заниматься своей математикой. Может быть, математика позволяла ему отвлечься и тем самым помогала справиться с горем. Он расширил свое исследование, связанное с орбитой Цереры, и создал на его основе общую теорию небесной механики: движения звезд, планет и их спутников. В 1809 г. он опубликовал «Теорию движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Менее чем через год после смерти Иоганны Гаусс вновь женился – на ее близкой подруге Вильгельмине Минне Вальдек.

 

* * *

К этому моменту Гаусс уже прочно утвердился в роли лидера немецкой – а значит, и мировой – математики. Его мнение ценилось и всюду встречало уважение; нескольких слов похвалы или критики из его уст было достаточно, чтобы кардинальным образом повлиять на чью-нибудь карьеру. В целом он не злоупотреблял своим влиянием и много делал для поощрения молодых математиков, однако его взгляды были очень консервативными. Гаусс сознательно избегал любых вопросов, которые могли вызвать споры и противоречия; он прорабатывал их для собственного удовольствия, но не публиковал. Иногда такое сочетание приводило к несправедливости. Самый вопиющий пример такого рода связан с неевклидовой геометрией, но эту историю я отложу до следующей главы.

Гаусс оставил после себя широкий спектр работ в самых разных областях математики. Он дал первое строгое доказательство Основной теоремы алгебры о том, что любое полиномиальное уравнение имеет решения в комплексных числах. Он дал строгое определение комплексных чисел как пар действительных чисел, с которыми можно проводить определенные операции. Он доказал фундаментальную теорему комплексного анализа, известную как теорема Коши, потому что Огюстен-Луи Коши не только доказал ее независимо, но и опубликовал доказательство. В действительном анализе можно проинтегрировать некоторую функцию на определенном интервале и получить при этом площадь под соответствующей кривой. В комплексном анализе функцию можно проинтегрировать вдоль некоторой кривой на комплексной плоскости; называется такой интеграл интегралом по контуру. Гаусс и Коши доказали, что если начальные и конечные точки двух контуров совпадают, то значение интеграла по тому и другому контуру зависит только от этих точек, при условии что функция не принимает бесконечных значений ни в какой точке внутри замкнутой кривой, полученной в результате объединения двух контуров. Этот простой результат имеет глубокие следствия для соотношения между комплексной функцией и ее сингулярностями – точками, в которых она принимает бесконечные значения.

Гаусс сделал первые шаги к топологии и ввел понятие коэффициента зацепления – топологического свойства, которое часто можно использовать для доказательства того, что две сцепленные кривые невозможно расцепить при помощи непрерывной деформации. Эту концепцию позже обобщил для более высоких размерностей Пуанкаре (глава 18). Кроме того, это был первый шаг к созданию теории топологии узлов – темы, о которой Гаусс тоже размышлял и которая сегодня имеет свои приложения в квантовой теории поля и строении ДНК-молекулы.

 

* * *

Как директор Гёттингенской обсерватории Гаусс вынужден был посвящать много времени строительству новой обсерватории, которое завершилось в 1816 г. Не пренебрегал он и математикой: публиковал работы по бесконечным рядам и гипергеометрической функции, статью по численному анализу, кое-какие статистические идеи и работу «Теория притяжения однородного эллипсоида» о гравитационном притяжении сплошного однородного эллипсоида – лучшей аппроксимации для формы планеты, чем шар. В 1818 г.

Быстрый переход