Изменить размер шрифта - +
В конце концов, весь смысл бесконечности как понятия состоит в том, что она не всегда ведет себя как конечные числа. Главный вопрос здесь – как далеко мы можем зайти и какие проблемы сможем решить.

Следующим крупным открытием Кантора стало то, что множество рациональных чисел (для простоты ограничимся только положительными) тоже имеет мощность ℵ<sub>0</sub>. Их можно поставить во взаимно однозначное соответствие с натуральными числами так:

 

Чтобы получить верхнюю строку, мы упорядочиваем рациональные числа не в числовой последовательности, а иначе. Определим сложность рационального числа как сумму его числителя и знаменателя. Будем рассматривать только те рациональные числа, у которых числитель и знаменатель не имеют общих множителей, чтобы не включить одно и то же число дважды. К примеру, 2/3 и 4/6 – это одно и то же рациональное число; возьмем из них только первое. Для начала разделим рациональные числа на классы в порядке возрастания сложности. Каждый такой класс конечен. Затем упорядочим, в пределах каждого класса, дроби по возрастанию числителя. Таким образом, класс сложности 5 упорядочится так:

1/4 2/3 3/2 4/1.

Легко доказать, что любое положительное рациональное число будет включено в один из классов один, и только один раз. Натуральным числом, которое будет поставлено ему в соответствие, станет номер этого числа в окончательном упорядоченном списке.

 

* * *

До настоящего момента нам могло казаться, что ℵ<sub>0</sub> – это всего лишь хитроумный символ для обозначения бесконечности и что все бесконечности одинаковы. Однако следующее открытие взрывает такое предположение. Множество действительных чисел невозможно поставить во взаимно однозначное соответствие со множеством натуральных чисел.

Первое доказательство Кантора 1874 г. было нацелено на одну из проблем теории чисел – существование трансцендентных чисел. Алгебраическое число – это число, удовлетворяющее некоторому полиномиальному уравнению с целыми коэффициентами; к примеру, это число  являющееся решением уравнения x<sup>2</sup>–2 = 0. Если число не является алгебраическим, его называют трансцендентным. К примеру, не известно было никакого подобного уравнения, которому удовлетворяли бы числа e и π, и предполагалось, что они трансцендентны; эта гипотеза оказалась верной. Лиувиль доказал существование трансцендентного числа в 1844 г., но пример, который он при этом использовал, был совершенно искусственным. Кантор доказал, что «большинство» действительных чисел трансцендентны; для этого он показал, что множество алгебраических чисел имеет мощность ℵ<sub>0</sub>, но мощность множества действительных чисел больше, чем ℵ<sub>0</sub>. В его доказательстве принимается допущение о том, что множество действительных чисел счетно и возможно построение последовательности вложенных интервалов, исключающих каждое действительное число по очереди. Пересечение этих интервалов (можно доказать, что оно не пустое) должно содержать некоторое действительное число, но, каким бы это число ни было, мы его уже исключили.

В 1891 г. он нашел более простое доказательство – знаменитый диагональный метод. Предположим (чтобы затем прийти к противоречию), что действительные числа (для простоты – между 0 и 1) счетны. Тогда можно поставить им во взаимнооднозначное соответствие счетные, то есть натуральные, числа. В десятичной нотации любое соответствие такого рода принимает вид

1 0, a<sub>1</sub>a<sub>2</sub>a<sub>3</sub>a<sub>4</sub>…

2 0, b<sub>1</sub>b<sub>2</sub>b<sub>3</sub>b<sub>4</sub>…

3 0, c<sub>1</sub>c<sub>2</sub>c<sub>3</sub>c<sub>4</sub>…

4 0, d<sub>1</sub>d<sub>2</sub>d<sub>3</sub>d<sub>4</sub>…

… …

Согласно нашему предположению, любое действительное число найдется где-то в этом списке.

Быстрый переход