Изменить размер шрифта - +
Для математика «интересно» в основном означает «могу я найти способы протолкнуть все это дальше?», но лакмусовой бумажкой в этом случае является вопрос «какие проблемы это сможет решить?» Только после получения удовлетворительных ответов на оба эти вопроса несколько упорных и педантичных душ спускаются в подвал решают проблему достойного основания.

Математики использовали бесконечность задолго до того как догадались что это такое и как использовать её на благо. В V в. до н. э., Архимед, выдающийся греческий математик и серьезный претендент на призовое место среди самых выдающихся учёных все времён, разработал способ нахождения объема сферы при помощи (концептуальной) нарезки её на бесконечное число бесконечно тоненьких дисков, подобно тонко-тонко нарезанному хлебу, затем взвешивая их чтобы сравнить их общий объем с объемом подходящего тела, который он уже знал. Как только он получит ответ при помощи этого удивительного метода, он вернулся к началу и нашёл логически приемлемый способ доказать свою правоту. Но без всей этой возни с бесконечностью, он не узнал бы где начать, а его логическое основание так и не сдвинулось бы с мертвой точки.

Ко времени Леонарда Эйлера, настолько продуктивного автора, что его можно считать Терри Пратчеттом математики восемнадцатого века, многие из ведущих математиков возились с «бесконечными рядами» — кошмаром любого школьника о сумме, которая никогда не заканчивается. Вот например:

1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 +…, где двоеточие означает «и так далее». Математики пришли к выводу, что эта сумма не сводится ни к чему толковому, хотя в результате должна составлять два.[20] Если вы остановитесь на каком-либо конечном этапе, то получите нечто меньшее чем два. Но сумма отставания продолжает уменьшаться. Сумма вроде как подбирается к правильному ответу, но в действительности его не достигает. Однако то количество, на которое отстаёт можно можно сократить насколько позволит ваше желание и время.

Ничего не напоминает? Выглядит подозрительно похоже на один из парадоксов Зенона/Ксено. О том как стрела подкрадывается к своей цели, как Ахиллес догоняет черепаху. О том, что вы можете делать бесконечно многое за конечный промежуток времени. Сделайте первое дело. Спустя одну минуту сделайте второе. Спустя ещё полминуты сделайте третье… и так далее. Всего за две минуты вы сделаете бесконечно многое.

Понимание того, что бесконечные суммы имеют разумное значение, это только начало. Оно не развеивает всех парадоксов. По большей части оно только их обостряет.

Математики выяснили, что некоторые бесконечности безопасны, а другие нет.

Единственный вопрос, который возникает после такой блестящей догадки это: как вы узнали? Ответ в том, что если ваше понятие бесконечности не приводит к логическим противоречиям, тогда бесконечность безопасна, а если приводит — то нет. Ваша задача это дать разумный ответ на то, какая «бесконечность» вас интересует. Вы не можете предположить что она автоматически имеет смысл.

Не смотря на то, что на протяжении восемнадцатого и начала девятнадцатого века математики разработали очень много понятий «бесконечности», все они являются потенциальными. В проективной геометрии «бесконечно удалённая точка» это место где пересекаются две параллельные прямые, подобно тому как рельсы железной дороги сходятся на горизонте, и кажется что на горизонте они пересекаются. Но если по равнине едет поезд, горизонт бесконечно удаляется, и вообще не является частью равнины, а только оптическая иллюзия. Так что точка в бесконечности определятся бесконечным процессом движения по железнодорожным путям. Поезд никогда туда не приедет. В алгебраической геометрии круг заканчивается тем, что можно определить как «коническое сечение, которое проходит через две мнимых бесконечно удалённых точки», которое легко можно воссоздать с помощью пары циркулей.

Быстрый переход