Изменить размер шрифта - +
Количество дней в неделе определяется числом «семь». Удивительная особенность подхода Кантора заключается в следующем: вы можете узнать, находятся ли в другом наборе семь предметов без каких-либо подсчетов. Для этого вам лишь нужно соотнести члены наборов друг с другом так, чтобы каждому члену из первого набора был подобран элемент из второго. Если, к примеру, второй набор — это цвета спектра, то наборы будут соотнесены таким образом: понедельник — красный, вторник — оранжевый, среда — желтый, четверг- зеленый, пятница — голубой, суббота — фиолетовый[22], воскресенье — октариновый.

Порядок, в котором вещи будут пронумерованы абсолютно неважен. Но нельзя соотносить вторник сразу и с фиолетовым, и с зеленым, или зеленый и со вторником, и с воскресеньем. Или пропускать некоторые элементы.

К примеру, вы попадете в беду, если захотите соотнести дни недели со слонами, на которых стоит Диск: воскресенье- Берилия, понедельник- Тьюбул, вторник- Великий Т’Фон, среда-Джеракин, а четверг?

Точнее, у вас кончатся слоны. Даже если мифический пятый слон возьмет на себя четверг.

В чем разница? Ну, в неделе семь дней, а в спектре семь цветов, поэтому вы можете соотнести эти два множества. А вот слонов у вас всего четыре (ну, может, пять), а четыре или пять никак нельзя приравнять к семи.

Глубокий философский смысл здесь в том, что вам не нужно знать чисел четыре, пять и семь, чтобы обнаружить что нет никакого способа соотнести эти два множества. Разговор о величине цифр подобен размахиванию кулаками после драки. Соотнесение логически первостепенно по отношению к счёту.[23]

 

Пока что ничего нового. Но соотнесение имеет смыл не только для конечных множеств, но и для бесконечных. Вы даже можете соотнести четные числа с остальными:

2 1

4 2

6 3

8 4

10 5 и так далее. Подобные соответствия объясняют происходящее в отеле Гилберта. Вот как у Гилберта появилась идея (помните, крыша вперед фундамента).

Какое же кардинальное число соответствует всем числам (и, соответственно, любого множества, которое можно с ним соотнести)? Классическое название это «бесконечность». Однако Кантор, будучи осторожным, предпочел название, которое не так сильно цепляло внимание, поэтому в 1883 году он дал ему имя «Алеф» — по первой буква еврейского алфавита, и подписал под ней небольшой ноль, по причинам, которые выяснились довольно скоро: Алеф-нуль.

Он знал что именно он начал:

«Я точно знаю, что выбрав такую процедуру я противопоставил свою позицию широко распространённому мнению относительно бесконечности в математике и текущим взглядам на природу числа. " Он получил то, что и ожидал: много критики и особенно от Леопольда Кроникера. «Бог создал целые числа: всё остальное — дело рук человеческих» — заявлял Кроникер.

Сейчас, правда, большинство их нас думает, что и целые числа создал человек.

Зачем тогда вводить новый символ? (тем более еврейский). Если бы по мнению Кантора существовала только одна бесконечность, он смело назвал бы её просто «бесконечность» и использовал бы классический символ перевёрнутой восьмёрки. Он быстро понял, что согласно его точки зрения, могут существовать и другие бесконечности, а он вполне вправе назвать их альф-один, алеф-два, алеф-три и так далее.

Как же могут существовать другие бесконечности? Это является большим и неожиданным последствием неразвитой идеи соотнесения. Чтобы объяснить как это происходит, в каком-то смысле нам нужно будет поговорить о действительно больших числах. Конечных и бесконечных. Чтобы убедить вас в том, что все они белые и пушистые мы введем простую условность.

Если n обозначает любое число любого размера, тогда n-плекс обозначает 10 в степени n, что означает единицу с n нулями.

Быстрый переход