В геноме человека содержатся четыре копии гена SRGAP2, тогда как у других человекообразных обезьян всего одна. Мы можем определить, когда именно происходило удвоение гена: первый раз это случилось 3,4 миллиона лет назад, а затем новая версия удвоилась еще дважды — 2,4 миллиона лет назад и примерно один миллион лет назад. Далее ученые выяснили, в каких тканях данный ген проявляет активность. И вот что интересно: первое и третье удвоение, похоже, не сыграли никакой важной роли, и образовавшиеся копии просто тихонько ржавеют в нашем геноме, но второе удвоение дало начало гену, который выполняет в нашем мозге определенную функцию. По-видимому, этот ген способствует повышению плотности и длины разветвляющихся отростков нейронов коры, называемых дендритами. Нейроны такого типа существуют только у людей: в мозге мыши их нет, но, если встроить в геном мыши человеческую версию гена, у нее вырастают крепкие и плотные дендриты. Эта версия гена, SRGAP2C, появилась 2,4 миллиона лет назад, как раз тогда, когда мозг наших предков значительно увеличился в размере. Примерно в это же время мы начали расщеплять камни и превращать их в олдувайские орудия.
Связь кажется очевидной, но это лишь мои рассуждения. Хотя, возможно, не такие уж безумные. Возникает сильное искушение связать между собой эти три вещи: рождение нового гена, его предполагаемую функцию в головном мозге и одновременное появление новых способностей. Но пока это все, что нам известно. Не этот единственный ген сделал нас такими, какие мы есть, но он мог быть одним из нескольких, даже если мы пока точно не знаем, в чем заключается их функция. Эти гены стали ключом к выявлению важнейших различий между нашим мозгом и мозгом других существ, а со временем мы найдем и другие генетические подсказки. Ни одна из них не была единственным триггером, но лишь частью общей картины нашей эволюции.
Гены «нового образца»
Удвоение генов и перенос из других источников — это примеры того, как природа умеет применять уже существующие инструменты (эволюция — луддит). Но она также умеет создавать с нуля. Мы называем это мутациями de novo: кажущиеся бессмысленными участки ДНК мутируют и превращаются в читаемые фразы.
Генетический код устроен следующим образом. Алфавит ДНК состоит из четырех букв, организованных в трехбуквенные «слова», каждое из которых кодирует одну аминокислоту; аминокислоты связаны между собой в строгом порядке, определяющем структуру белка. Если использовать аналогию с языком, у нас есть буквы (например, в английском языке их 26), слова (которые могут быть любой длины) и предложения (тоже любой длины). В генетике есть только четыре буквы, а все слова состоят из трех букв. В таком случае гены — это предложения, и, как в языке, они могут быть любой длины. Если ген создается с нуля, он должен эволюционировать. В отличие от дупликаций и инсерций (вставок), возникших из уже существовавших последовательностей, гены de novo не встраивались в наш геном в рабочем виде. В книге каждое слово зачем-то нужно, а в геноме содержится огромное количество ДНК, не являющейся словами или предложениями — это просто случайный наполнитель. Допустим, у нас есть последовательность букв:
НАШОМБЫЛМАЛНАШПЕСБЫЛМИЛ
Если напрячься, можно обнаружить в этой последовательности простое предложение. Вставим после третьей буквы букву Д и прочтем:
НАШДОМБЫЛМАЛНАШПЕСБЫЛМИЛ
А если между трехбуквенными словами вставить пробелы, мы получим следующее:
НАШ ДОМ БЫЛ МАЛ НАШ ПЕС БЫЛ МИЛ
Эта фраза имеет смысл только в том случае, если буквы стоят в правильном порядке. В генетике мы называем такой порядок открытой рамкой считывания. В генах между словами нет пробелов, но клетки умеют распознавать трехбуквенные структуры. Возникновение генов de novo происходит тогда, когда набор букв случайно превращается в осмысленное предложение, которое прочитывается клеткой и транслируется в белок, а этот белок каким-либо образом используется. |