Изменить размер шрифта - +

«Утром 18 августа 1769 года гром ударил в башню святого На-зария в Бресчии. Под основанием этой башни находился подземный погреб, в котором хранилось 1 030 000 килограммов пороха, принадлежащего Венецианской республике. Эта огромная масса воспламенилась мгновенно. Шестая часть зданий обширного и прекрасного города была разрушена, а все остальное было потрясено так, что угрожало падением. При этом погибло три тысячи человек».

В наш век все подобные хранилища защищены от ударов «небесных стрел» вполне надежно. Но разве мало есть других взрывоопасных объектов, которые могут пострадать.

Еще в древнем мире люди нашли достаточно надежную защиту от молний. Свыше трех тысяч лет назад жрецы Древнего Египта устанавливали около своих храмов высокие мачты, обитые медными пластинами. Вот когда, по существу, уже был изобретен молниеотвод.

История изучения природы атмосферных электрических разрядов — а это и есть молния — сохранила память о подвигах ученых во имя науки.

 

ЛИНЕЙНАЯ МОЛНИЯ.

 

Ломоносов вместе со своим другом профессором Рихманом решили изучать молнию. Они построили «громовую машину». На высоком дереве был установлен шест, а на нем закреплен железный стержень; он соединялся с проволокой, протянутой в комнату. На конце проволоки были подвешены железная линейка и шелковая нитка.

При грозе железная линейка так сильно заряжалась атмосферным электричеством, что из нее можно было извлекать электрические искры.

Опыты были очень опасны. Но ученые самоотверженно продолжали изучение молнии. В 1753 году Рихман был убит молнией у своей «громовой машины».

Тяжело пережил Ломоносов смерть друга, но продолжал исследования. И пришел к выводу, что молния — «это естественное электричество, похожее во всем на то, которое мы извлекаем из наших машин».

Теперь мы знаем, что грозовое облако — это, по существу, огромный аккумулятор электричества. Взгляните на рисунок. На нем ясно видно, как оно там распределяется. В нижней части облака собираются отрицательные электрические заряды, а в верхней — положительные. Кроме того, области, заряженные положительным электричеством, находятся у основания грозового облака.

Почему так? Вопрос далеко не простой.

Одни ученые полагают, что это происходит благодаря разбрызгиванию в воздухе падающих дождевых капель. Каждая капелька дождя заряжена электричеством, при этом в центре капли находится обычно положительный заряд, а на поверхности ее располагается равный ему отрицательный заряд. В грозовом облаке всегда имеются сильные восходящие потоки воздуха. Эти потоки подхватывают падающие капли дождя и дробят их на части. При этом мелкие брызги, оторванные ветром от основного ядра капли, уносят с собой отрицательные заряды, а оставшиеся более крупные частички разбитых дождевых капель получают положительный заряд. Мелкие, более легкие брызги поднимаются воздушными потоками выше, а более тяжелые остаются внизу.

Так происходит разделение зарядов атмосферного электричества в нижней и средней части грозового облака.

А в верхних его слоях?

Там — царство ледяных кристаллов. Носящиеся в потоках воздуха, сталкиваясь друг с другом, они дробятся и тоже наэлектризовываются. Мелкая ледяная пыль, несущая на себе заряды положительного электричества, уходит к вершине облака, а более крупные осколки атмосферного льда, заряженные отрицательно, опускаются ниже и создают зону отрицательных зарядов.

Но все же вопрос, как заряжается атмосферный аккумулятор, еще не выяснен полностью. Ясно главное: в грозовом облаке накапливается большой запас атмосферного электричества.

 

 

А дальше приходит в действие простой физический закон: электрические заряды разных видов взаимно притягиваются. Поэтому, когда одна часть грозового облака заряжается положительным электричеством, а другая — отрицательным, оба электрических заряда стремятся притянуться один к другому.

Быстрый переход