Угол обзора – важный параметр для любого фотообъектива или телескопа. Широкоугольные объективы охватывают большое поле зрения (в англоязычной терминологии – field of view), но они уже не могут различать мелких деталей в каждой точке съемки. Узкоугольные объективы фотографы обычно называют длиннофокусными, или телефото, или просто телевиками. Они обладают возможностью «приближать», т. е. позволяют рассмотреть малую область, но с высоким разрешением. Некоторые ручные фотокамеры могут менять угол обзора, приближать и отдалять изображение – так называемый зум, но на космические аппараты такие камеры стараются не ставить из-за обилия подвижных частей, которые могут выйти из строя. Чаще в космос отправляют телескопы с фиксированными характеристиками, фотографы такие объективы называют «фиксы». Привычные всем смартфоны также имеют камеры с фиксированным углом обзора, что роднит их с космическими аппаратами.
Если перед космическим аппаратом стоит задача как можно лучше увидеть малый объект исследования, то конструкторы используют узкоугольную камеру с максимально возможным разрешением. По такому принципу созданы спутники компании Maxar или камера HiRISE на марсианском космическом аппарате MRO. Если же мы захотим быстро составить полную карту исследуемого большого космического тела, то лучше поставить широкоугольную камеру. Так поступили создатели окололунных зондов SMART-1, Kaguya, Chandrayaan-1, Chang'e 1, 2. Обычно конструкторы стараются ставить на зонды и широкоугольный объектив, и узкоугольный, но такое удается не всегда, ведь грузоподъемность ограничена, а ученые всегда стремятся установить побольше разных приборов.
Но что делать конструктору, когда от него требуют создать аппарат для составления полной карты Луны в обозримые сроки, с высоким разрешением, с ограниченностью по массе полезной нагрузки и уложиться в сравнительно скромный бюджет?
Он создает LRO.
Три камеры, объединенные в один блок LROC, имеют массу 18 кг, а технологии базируются на более ранних, взятых с марсианского MRO. Широкоугольная WAC имеет марсианского предшественника MARCI. Узкоугольная NAC получила электронику от марсианской CTX, но на окололунной орбите пришлось использовать другую оптическую схему телескопа, более стойкую к температурным перепадам. Марсианский телескоп CTX обладает главным зеркалом диаметром 108 мм и снимает Марс с линейным разрешением 5 м с высоты 300 км. Если бы MRO удалось снизить до высоты LRO, то CTX показала бы поверхность с фактическим линейным разрешением около 1 м. Зато угол обзора этой марсианской камеры вдвое шире каждой отдельной лунной NAC.
Перед конструкторами NAC LRO стояла задача сделать камеру, превосходящую вдвое линейное разрешение CTX, но сохраняющую прежний угол обзора. Наиболее простым выходом стало создание двух одинаковых узкоугольных камер, которые суммарно сравнятся с одной CTX по углу обзора. Если бы в NAC использовали оптику с предельным разрешением, то угол обзора даже двух камер с высоты 50 км составил бы всего около 1,6 км.
То есть снижение разрешения снимков NAC LRO в три раза произведено именно для расширения угла обзора в те же три раза.
Чтобы убедиться в этом, сравним характеристики различных космических аппаратов с телескопами. В приведенной таблице телескопы перечислены в порядке увеличения диаметра главного зеркала. Приборы CTX и HiRISE установлены на космическом аппарате, летающем вокруг Марса. Спутники SkySat-1, «Ресурс-П», Pléiades, WorldView-3 и GeoEye-1 летают на низкой околоземной орбите и снимают поверхность Земли. Космический телескоп Hubble также находится у нашей планеты, но смотрит в космос.
Из таблицы хорошо видно, что у телескопов с угловым разрешением, близким к теоретически возможному, очень малый угол обзора – редко больше полутора градусов. Такое разрешение еще годится для полета на большой высоте, но с низкой орбиты в 50 км это слишком узкая полоса съемки. |