В принципе, птицы могли бы образовать единую диагональную линию, примерно соответствующую одному из плечей V. Однако при этом место с другой стороны – ближе к лидеру – оставалось бы свободным. Но следует заметить, что один из концов птичьего клина, как правило, длиннее другого.
В экспериментах с ибисами молодым птицам требовалось немало времени, чтобы научиться занимать в полете правильную позицию. На практике обычно находятся птицы, у которых это не получается, а клин редко бывает правильным. Тем не менее детальные эксперименты убедительно показывают, что ибисы достаточно хорошо ощущают потоки воздуха, чтобы занимать самую энергоэффективную или близкую к ней позицию по отношению к передней птице.
Дополнительную информацию см. в главе «Загадки разгаданные».
Мнемоника для e
Для запоминания числа π существует бесчисленное количество мнемонических правил. Для другой знаменитой математической постоянной – числа e, основания натурального логарифма
e = 2,7182818284 5904523536 0287471352662497757…,
таких правил гораздо меньше. Два из них позволяют запомнить по десять цифр этой константы:
Существует также мнемонический текст на 40 знаков, в котором рассказывается о числе e и который придумал Зив Бэрел (Zeev Barel, A mnemonic for e, Mathematics Magazine 68 (1995) 253), его вы можете проверить по числовому варианту, приведенному выше. Для обозначения нуля в этом тексте используется восклицательный знак в кавычках «!», и выглядит это так:
We present a mnemonic to memorise a constant so exciting that Euler exclaimed: '!' when first it was found, yes, loudly '!'. My students perhaps will compute e, use power or Taylor series, an easy summation formula, obvious, clear, elegant.
«Простая формула суммирования», упомянутая в тексте, такова:
и так до бесконечности. Теперь знак! обозначает факториал
n! = n× (n – 1) × … × 3 × 2 × 1.
Поразительные квадраты
Существует бесконечно много натуральных чисел, которые можно выразить в виде суммы трех квадратов двумя разными способами: a² + b² +c² = d² + e² + f². Но возможны и дальнейшие выводы. Вот поразительный пример:
123789² + 561945² + 642864² = 242868² + 761943² + 323787².
Это соотношение сохраняется, если мы будем последовательно убирать из каждого числа крайнюю левую цифру:
23789² + 61945² + 42864² = 42868² + 61943² + 23787²;
3789² + 1945² + 2864² = 2868² + 1943² + 3787²;
789² + 945² + 864² = 868² + 943² + 787²;
89² + 45² + 64² = 68² + 43² + 87²;
9² + 5² + 4² = 8² + 3² + 7².
Оно сохраняется также, если последовательно убирать из каждого числа крайнюю правую цифру:
12378² + 56194² + 64286² = 24286² + 76194² + 32378²;
1237² + 5619² + 6428² = 2428² + 7619² + 3237²;
123² + 561² + 642² = 242² + 761² + 323²;
12² + 56² + 64² = 24² + 76² + 32²;
1² + 5² + 6² = 2² + 7² + 3².
А также если мы будем убирать цифры одновременно с двух сторон:
2378² + 6194² + 4286² = 4286² + 6194² + 2378²;
37² + 19² + 28² = 28² + 19² + 37². |