Изменить размер шрифта - +
Попробуем расширить поле исследования и проверим пять основных лун Урана; получим график справа. Вновь степенная зависимость.

 

 

 

* * *

Совпадение или что-то более глубокое? Мнения астрономов разделились. В лучшем случае наблюдается тенденция к степенной зависимости в расстояниях. При этом зависимость не универсальна.

Здесь вполне возможно какое-то рациональное объяснение. Наиболее вероятное начинается с идеи о том, что в динамике случайной системы планет принципиально важную роль играют резонансы — случаи, когда орбитальные периоды двух планет дают в отношении простую дробь. К примеру, один из периодов может составлять 3/5 от другого, это резонанс 5:3. Не обращая внимания на остальные тела, эти две планеты будут то и дело — через правильные интервалы — выстраиваться вдоль радиальной прямой, связывающей их со звездой, потому что пять оборотов одной планеты вокруг звезды в точности соответствуют трем оборотам другой планеты. За долгий период времени возникающие при этом небольшие возмущения орбит будут накапливаться, так что планеты будут склонны менять свои орбиты. В то же время для периодов, отношение которых не дает простой дроби, возмущения, как правило, компенсируются, поскольку в таких системах нет преимущественного направления, вдоль которого могла бы действовать связывающая две планеты сила тяготения.

И это не просто неопределенное предположение: оно подтверждается детальными расчетами и обширной математической теорией. В первом приближении орбита небесного тела представляет собой эллипс. На следующем уровне аппроксимации наблюдается прецессия эллипса: его большая ось медленно поворачивается в пространстве. Еще более точная аппроксимация показывает, что доминирующие члены в centerх движения небесных тел возникают от вековых (секулярных) резонансов — более общего типа резонансных отношений между периодами, с которыми прецессируют орбиты нескольких тел.

Как именно движутся тела, находящиеся в резонансе друг с другом, зависит от отношения периодов, а также от их координат и скоростей, но часто результатом бывает очищение подобных орбит. Компьютерное моделирование показывает, что случайным образом распределенные вокруг звезды планеты склонны занимать позиции, отношения между которыми примерно похожи на закон Тициуса — Боде, а промежуточные позиции вычищаются резонансами. Но все это достаточно неопределенно и расплывчато.

В Солнечной системе есть несколько «миниатюрных» подсистем, роль которых играют планеты-гиганты со своими лунами. Орбитальные периоды трех крупнейших спутников Юпитера — Ио, Европы и Ганимеда — относятся друг к другу как 1:2:4, то есть каждый последующий из них вдвое больше предыдущего (см. главу 7). Четвертый спутник этой группы — Каллисто — имеет период немного меньший, чем удвоенный период Ганимеда. Согласно третьему закону Кеплера, орбитальные радиусы тел связаны аналогичным отношением, только множитель 2 следует заменить той же двойкой в степени 2/3, что дает нам коэффициент 1,58. То есть орбитальный радиус каждого спутника должен быть примерно в 1,58 раза больше орбитального радиуса предыдущего спутника. Это тот случай, когда резонанс не расчищает, а стабилизирует орбиты, и отношение расстояний здесь 1,58 вместо 2 по закону Тициуса — Боде. Тем не менее расстояния тоже подчиняются степенному закону. Сказанное можно отнести также к лунам Сатурна и Урана, как указал Стенли Дермотт в 1960-е. Такое распределение спутников называют законом Дермотта.

Расстояния, связанные степенным законом, представляют собой более общую закономерность, в которую входит и хорошая аппроксимация закона Тициуса — Боде. В 1994 году Беранжер Дюбрюль и Франсуа Гране, применив два общих принципа, вывели степенной закон распределения расстояний для типичных коллапсирующих солнечных туманностей. Оба принципа основаны на симметрии. Облако обладает осевой симметрией; кроме того, распределение вещества в нем примерно одинаково на всех масштабах измерения — это масштабная симметрия.

Быстрый переход