Изменить размер шрифта - +
Оба принципа основаны на симметрии. Облако обладает осевой симметрией; кроме того, распределение вещества в нем примерно одинаково на всех масштабах измерения — это масштабная симметрия. Осевая симметрия динамически обоснована, потому что асимметричное облако непременно либо разорвется, либо станет со временем более симметричным. Масштабная симметрия типична для важных процессов, влияющих, по мнению ученых, на формирование планет, таких как турбулентные потоки внутри солнечной туманности.

Сегодня мы в состоянии выглянуть за пределы нашей Солнечной системы. А там такое начинается! Орбиты известных экзопланет — планет у других звезд — расположены на самых разных расстояниях, в большинстве своем совершенно непохожих на те, что мы наблюдаем у себя в Солнечной системе. С другой стороны, известные экзопланеты всего лишь непредставительная выборка из множества всех существующих планет; часто мы видим у звезды только одну планету, хотя там, вероятно, присутствуют и другие. К тому же методы, имеющиеся у нас на данный момент, обнаруживают прежде всего крупные планеты, обращающиеся близко к своему центральному телу.

До тех пор пока мы не получим полные планы планетных систем множества звезд, мы не сможем по-настоящему понять, что представляют собой экзопланетные системы. Однако в 2013 году Тимоти Бовэ и Чарльз Лайнуивер, рассмотрев 69 экзопланетных систем, в которых достоверно имеется не менее четырех планет, выяснили, что 66 из них подчиняются степенным законам. Исследователи попытались также при помощи полученных степенных зависимостей осторожно предсказать «недостающие» планеты, то есть повторить в экзосистемах историю с Церерой. Из 97 планет, предсказанных таким образом, пока удалось обнаружить лишь пять. Даже с учетом сложностей, связанных с обнаружением небольших планет, результат не оправдал надежд.

Все это достаточно неопределенно, поэтому внимание ученых переместилось на другие принципы, которые могли бы объяснить, как устроены планетные системы. Эти принципы опираются на тонкие особенности нелинейной динамики и не являются совсем уж эмпирическими. Однако числовой характер этих закономерностей менее очевиден. В частности, Майкл Делниц математически показал, что поле тяготения Юпитера, судя по всему, организовало все остальные планеты в единую взаимосвязанную систему, соединенную природными «трубками». Эти трубки, которые можно распознать только при помощи их математических характеристик, представляют собой естественные низкоэнергетические пути между разными мирами. Эту идею и связанные с ней вопросы мы обсудим в главе 10, куда они впишутся более естественно.

 

* * *

Был ли он совпадением или нет, но закон Тициуса — Боде вдохновил ученых на некоторые важные открытия.

Как известно, невооруженным глазом с Земли можно увидеть только пять классических планет: Меркурий, Венеру, Марс, Юпитер и Сатурн. Плюс Земля, если вы хотите проявить дотошность, но от нее в данный конкретный момент можно увидеть лишь маленький кусочек. С изобретением телескопа астрономы получили возможность наблюдать звезды, слишком слабые для невооруженного глаза, а также другие небесные объекты, такие как кометы, туманности и спутники. Астрономы работали на пределе тогдашних технических возможностей, и зачастую им проще было обнаружить на небе какой-то новый объект, чем понять, что он собой представляет.

Именно с этой проблемой столкнулся Уильям Гершель в 1781 году, когда направил телескоп, сооруженный в саду его дома в Бате, на созвездие Тельца и заметил слабую точку света возле звезды ζ Тельца; поначалу он подумал, что это либо «какая-то туманная звезда, либо, возможно, комета». Четырьмя ночами позже он записал в дневнике, что «выяснил, что это комета, ибо она изменила свое положение». Примерно пять недель спустя, докладывая о своем открытии Королевскому обществу, он все еще описывал это явление как комету.

Быстрый переход