Изменить размер шрифта - +
Если бы было можно выразить это действие математически как зависимость от параметров орбиты предполагаемой новой планеты, то удалось бы обратным ходом определить и саму эту орбиту. Тогда астрономы знали бы, куда смотреть, и если бы предсказание оправдалось, то они смогли бы обнаружить ту самую новую планету. Главная загвоздка при таком подходе состоит в том, что на движение Урана существенно влияют Солнце, Юпитер и Сатурн. Остальными телами Солнечной системы, пожалуй, можно пренебречь, но и без того разбираться придется по крайней мере с пятью телами. Точные формулы неизвестны даже для системы из трех тел; с пятью все намного сложнее.

К счастью, математики того времени успели уже придумать хитроумный способ обойти эти сложности. Математически возмущение — это новый эффект, изменяющий решения уравнений этой системы. К примеру, движение маятника под действием гравитации в вакууме имеет элегантное решение: маятник совершает одни и те же колебательные движения раз за разом, до бесконечности. Однако, если в системе присутствует сопротивление воздуха, уравнение движения изменяется, чтобы включить в себя эту дополнительную силу сопротивления. Для модели маятника эта сила — возмущение, она разрушает периодические колебания. В воздухе, в отличие от вакуума, колебания затухают, и маятник со временем останавливается.

Возмущения приводят к более сложным уравнениям, решать которые, как правило, труднее. Но иногда можно использовать само возмущение, чтобы понять, как меняются решения. Для этого мы записываем уравнения для разности между невозмущенным и возмущенным решениями. Если возмущение невелико, мы можем вывести приближенные формулы для искомой разности, отбросив при этом те члены уравнений, которые намного меньше возмущения. Этот прием упрощает уравнения в достаточной мере, чтобы их можно было решить в явном виде. Полученное в результате решение не является точным, но зачастую достаточно хорошо для практических целей.

Если бы Уран был единственной планетой в системе, его орбита представляла бы собой идеальный эллипс. Однако на эту идеальную орбиту оказывают возмущающее действие Юпитер, Сатурн и все остальные известные нам тела Солнечной системы. Совместное действие их гравитационных полей изменяет орбиту Урана, и это изменение может быть описано как медленная вариация орбитальных элементов Уранова эллипса. С большой точностью можно сказать, что Уран всегда движется по какому-то эллипсу, но во всякий новый момент это немного другой эллипс. Возмущения медленно изменяют его форму и наклонение.

Таким способом можно было вычислить, как должен двигаться Уран с учетом действия всех существенных возмущающих тел. Но наблюдения показывали, что на самом деле Уран не придерживается предсказанной таким образом орбиты. Вместо этого он постепенно отклоняется от нее, и эти отклонения можно измерить. Поэтому мы добавляем гипотетическое возмущение со стороны неизвестной планеты X, рассчитываем новую возмущенную орбиту, требуем, чтобы она совпадала с наблюдаемой орбитой, и вычисляем орбитальные элементы планеты X.

В 1843 году Джон Адамс продемонстрировал высший вычислительный пилотаж и рассчитал орбитальные элементы гипотетического нового мира. К 1845-му Урбен Леверье независимо от него провел собственные аналогичные вычисления. Адамс направил свои предсказания Джорджу Эйри, тогдашнему королевскому астроному Британии, с просьбой поискать на небе предсказанную планету. Эйри встревожили некоторые аспекты расчетов Адамса — напрасно, как выяснилось позже, — но Адамс не смог рассеять его сомнений, так что ничего сделано не было. В 1846 году Леверье опубликовал собственное предсказание, тоже не вызвавшее особого интереса, — до тех пор, пока Эйри не заметил, что результаты обоих математиков очень похожи. Он поручил директору Кембриджской обсерватории Джеймсу Чаллису провести поиск новой планеты, но Чаллису не удалось ничего обнаружить.

Вскоре после этого, однако, Иоганн Галле разглядел слабую светящуюся точку примерно в градусе от предсказания Леверье и в 12° от предсказания Адамса.

Быстрый переход