Начиная с момента, когда масса и плотность газового вещества достигают определенного, критического значения, газовое вещество под действием своего собственного притяжения начинает сжиматься и уплотняться. При этом вначале образуется холодный газовый шар. Но сжатие продолжается, и температура газового шара растет. Потенциальная энергия частиц в поле притяжения газового шара при приближении к центру становится меньше. Часть потенциальной энергии переходит в тепловую энергию.
Когда же газовый шар нагреется, он станет отдавать тепловую энергию через излучение с поверхностных слоев. Поэтому он будет охлаждаться вначале в поверхностном слое, а затем и в более глубоких слоях. Если бы в этом газовом шаре (звезде) не появились новые источники энергии, то процесс сжатия довольно быстро привел бы к исчезновению энергии и угасанию звезды. Всю
Рис. 16. Контуры спиральной структуры Галактики, определенные по расположению нейтрального водорода
энергию унесло бы излучение. Но на самом деле процесс этот более сложный. В результате сжатия центральные области звезды разогреваются до очень высоких температур. Они расположены очень глубоко и поэтому почти не испытывают влияния охлаждения, которое вызывается излучением с поверхностных слоев. Когда же температура центральной области достигает нескольких милли–5 онов градусов, в ней начинают протекать термоядерные реакции. Они сопровождаются выделением большого количества энергии.
Таким образом, первый период образования звезды — это период сжатия. Он длится до того момента, пока в центральной области звезды не начнут протекать термоядерные реакции. В продолжение периода
Рис. 17. Эволюционные перемещения звезд на диаграмме спектр — светимость в период сжатия
сжатия температура звезды повышается. Поэтому спектральный класс звезды становится более ранним. Что же касается светимости звезды, то в период сжатия ее увеличению будут способствовать увеличение температуры поверхности, а также увеличение прозрачности разогревшегося вещества. Поэтому из звезды будет непосредственно выходить излучение более глубоких и горячих слоев. Но работает и обратный механизм. Уменьшение радиуса звезды будет уменьшать светимость. Специалисты оценили совокупное действие всех механизмов и пришли к заключению, что в период сжатия звезды все же происходит небольшое увеличение светимости звезды. Именно поэтому на диаграмме спектр — светимость эволюция в период сжатия протекает вдоль линий, которые проходят справа налево и немного поднимаются вверх. Это показано на рисунке 17. Различие линий эволюции на диаграмме определяется различием масс газовых облаков, из которых образовались звезды. Чем больше масса, тем больше светимость, тем выше на диаграмме проходит линия эволюции.
Когда период сжатия подходит к концу и внутри звезды начинают протекать температурные реакции, все звезды оказываются на главной последовательности диаграммы спектр — светимость. В термоядерной реакции водород превращается в гелий. При этом четыре протона (четыре ядра атома водорода) образуют ядро атома гелия. Получившийся излишек массы превращается в энергию: примерно 0,007 массы вещества при этой реакции превращается в энергию излучения.
Несложно подсчитать, через какое время наша звезда — Солнце израсходует на излучение всю свою массу. Расчеты дают величину 1011лет. Это сто миллиардов лет.
Сжатие звезды прекращается потому, что от термоядерных реакций поступает энергия, которая противодействует сжатию. Она компенсирует расход энергии на излучение. Пока все будет происходить именно таким образом, звезда будет сохранять постоянными свои основные физические характеристики — радиус, температуру, светимость. Она будет оставаться на диаграмме спектр — светимость на линии главной последовательности. Но через какое-то время водород в центральной части звезды кончится. В результате радиус звезды должен увеличиться, а температура ее уменьшится. |