Изменить размер шрифта - +
Поэтому белый карлик остывает и превращается в черного карлика. Размер его при этом не изменяется.

В том случае, если масса звезды больше 1,2 массы Солнца, то в результате сжатия плотность ее вещества станет еще больше. При такой плотности начнут протекать ядерные реакции, которые поглощают много энергии. Поэтому звезда начинает стремительно сжиматься. Такое сжатие может закончиться ядерным взрывом, он называется вспышкой сверхновой звезды. В результате ядерного взрыва звезда сбрасывает оболочку и превращается в нейтронную звезду. В центре звезды плотность достигает миллиарда тонн в кубическом сантиметре. Примерно такова плотность атомного ядра. Собственно, специалисты считают, что нейтронная звезда есть что-то вроде атомного ядра размером в несколько километров. Ядерные частицы-нуклоны очень тесно упакованы в нейтронной звезде.

Если масса звезды не превосходит две массы Солнца, то нук-лонный газ способен квантовыми силами воспрепятствовать дальнейшему сжатию звезды. Тогда нейтронная звезда перестанет сжиматься и будет существовать в этом качестве. Нейтронные звезды считают холодными. Но на самом деле в ее центре температура достигает сотен — миллионов градусов, а на поверхности миллиона градусов. Тут нет никакого противоречия. При таком состоянии вещества как у нейтронной звезды понятие температуры является формальным, вычислительным и не имеет ничего общего с тем, к которому мы привыкли в повседневной жизни. Собственно, таково положение не только на нейтронной звезде, но даже в нашей атмосфере на высоте в сотни километров. Там ситуация обратная — плотность атмосферного газа столь мала, что можно говорить о вакууме. При такой малой плотности газа, как и при чрезмерно большой плотности, как в нейтронных звездах, температура является чисто вычислительной.

 

НЕЙТРИНО ВО ВСЕЛЕННОЙ

 

Нейтрино — это элементарная частица, обладающая огромной проникающей способностью. Существование такой частицы физик В. Паули предсказал еще в 1930 году. Эта частица понадобилась ученому для того, чтобы объяснить, куда девается часть энергии при бета-распаде. Бета-частица — это электрон. Когда происходит радиоактивный распад ядер с испусканием электронов, один химический элемент превращается в другой (так, тритий превращается в гелий). Но измерения показывают, что часть энергии при этом утрачивается, не регистрируется. Эту энергию уносит нейтрино, которое очень слабо взаимодействует с веществом и поэтому остается незамеченным физическими приборами. Проникающая способность нейтрино действительно фантастична — оно пролетает сквозь Землю, Солнце и вообще сквозь любые небесные тела без каких-либо проблем. Это и хорошо и плохо. Плохо потому, что для того, чтобы изучить нейтрино, надо его поймать. А сделать это трудно. А хорошо потому, что нейтрино может принести нам информацию из самых недоступных мест, например из самой центральной области Солнца и других звезд.

Далее мы будем говорить о нейтрино вообще, хотя существует три типа разных нейтрино. Это нейтрино электронные, мюонные и тау-нейтрино. Каждый тип нейтрино участвует только в определенных, специфических для него реакциях.

Ученые изучали нейтрино многие десятилетия. Они не сомневались, что нейтрино играет очень важную роль во Вселенной. И действительно, оказалось, что нейтрино является главной частицей во Вселенной. Академик М. Марков, специалист по физике нейтрино, так писал об этой частице: «Современнику трудно гадать, какое истинное место займет нейтрино в физике будущего. Но свойства этой частицы столь элементарны и своеобразны, что естественно думать, что природа создала нейтрино с какими-то глубокими, пока для нас не всегда ясными «целями».

Вселенная имеет ячеистую структуру, похожую на пчелиные соты. Это значит, что в сверхскоплениях галактик сами галактики и их скопления сосредоточены в тонких слоях, которые образуют стенки ячеек. Внутренность ячеек практически пуста.

Быстрый переход