При преобразовании одного грамма жидкой воды, находящейся при температуре, равной 100 °С, в один грамм пара с температурой 100 °С происходит полная нейтрализация всех межмолекулярных связей, которые еще остались после преобразования твердого вещества в жидкость. Только после этого молекулы начинают демонстрировать свойства, типичные для молекул газов, то есть свое практически независимое движение. При имевшем место ранее процессе таяния была нейтрализована только незначительная часть межмолекулярных сил притяжения, а основная часть их продолжает действовать. По этой причине «латентная, или скрытая, теплота парообразования» данного вещества в общем случае значительно выше, чем латентная теплота плавления того же самого вещества. Например, латентная теплота парообразования воды, а именно: количество теплоты, которое требуется для того, чтобы преобразовать 1 грамм воды с при температурой 100 °С в 1 грамм пара с той же температурой 100 °С, равно 539 калориям. То есть для воды латентная теплота парообразования почти в семь раз больше, чем латентная теплота плавления.
Таким образом, энергосодержание пара на удивление высоко. Сотня граммов воды, находящихся при температуре, равной 100 °С, в процессе охлаждения от этой температуры до точки замерзания отдает около 10 000 калорий. Сотня же граммов пара, находящихся при температуре, равной 100 °C, однако, отдает около 53 900 калорий, просто преобразовываясь в воду. Получившаяся вода тогда отдает еще и 10 000 калорий, по мере охлаждения до точки замерзания. По этой причине паровые двигатели обладают таким высоким коэффициентом полезного действия, который никогда бы не был доступен «двигателям на горячей воде». (Не вызывает удивления тот факт, что Джеймс Ватт, изобретатель парового двигателя, был студентом у Джозефа Блэка.)
Существует способ использования латентной теплоты парообразования. Предположим, что газ типа аммиака помещен под давлением в закрытый сосуд. Если увеличивать давление, то это заставит газ сжижаться. Поскольку аммиак сжижается, он отдает некоторое количество теплоты окружающей среде. Эта теплота может поднять температуру как непосредственно окружающей среды, так и самого аммиака. Однако если сосуд с аммиаком погрузить в проточную воду, то выделенная теплота будет уноситься этой водой, а жидкий аммиак будет оставаться при температуре, которая была у него в газообразном состоянии.
Если теперь сосуд с аммиаком вынуть из воды и снизить давление так, чтобы жидкий аммиак снова закипел и стал газом, он должен поглотить количество теплоты, эквивалентное тому, которое он отдал до того. Он и поглощает эту теплоту из самых близких источников — из себя и из своего непосредственного окружения. Часть кинетической энергии его собственных молекул преобразуется в потенциальную энергию газообразного состояния, и температура аммиака резко падает вниз.
Если мы возьмем газ, подобный аммиаку, и сделаем его частью механического устройства, которое поочередно то сжимает его, то позволяет ему испаряться, в результате мы получим тепловой насос, который потребляет теплоту из аммиака и непосредственно из близлежащей окружающей среды. Далее, поместив такой насос в некую изолированную коробку, мы получим рефрижератор, то есть холодильник.
Понижение температуры по мере испарения используется и нашими собственными телами. Благодаря действию потовых желез мы покрыты тонкой влажной пленкой, которая по мере испарения забирает теплоту от нашего тела и дает нам прохладу. Вода имеет самую высокую латентную теплоту парообразования среди обычных веществ, а так как наш пот является почти чистой водой, это означает, что мы все немного испаряемся, хотя обычно так мало, что совсем и не замечаем этого. В жаркую погоду процесс ускоряется, и если внешние условия изменяются, то мы хорошо можем видеть результат этого парообразования — конденсация (пот) накапливается в больших количествах. Все мы прекрасно знаем это чувство дискомфорта — результат частичного пробоя нашей личной системы охлаждения — как говорится: «в пот бросило». |