Изменить размер шрифта - +

Поток теплоты от горячего объекта к холодному объекту продолжается до тех пор, пока температура различных частей изолированной системы не сравняется, и это истинно независимо от того, как передается эта теплота: конвекцией, кондукцией или радиацией.

На раннем этапе развития термодинамики исследователи, столкнувшиеся с этим явлением, характеризующим поток теплоты, выбрали наиболее легко визуализируемое понятие: они думали о теплоте как о своего рода жидкости, и эта жидкость даже получила имя — «каллорик» — от латинского слова, означающего «теплота».

Мы можем использовать понятие жидкости как аналогию, для того чтобы изобразить поток теплоты. Представьте себе два сосуда, связанные между собой трубкой с вентилем, в левом сосуде — более высокий уровень жидкости, а в правом — более низкий. Естественно, давление воды слева будет выше, чем справа, так что у нас имеется суммарное давление слева направо. Если трубка с вентилем будет открыта, вода потечет слева направо и будет продолжать течь до тех пор, пока уровни с обеих сторон не сравняются. Более высокий уровень воды будет падать; низкий уровень повысится, а окончательный уровень с обеих сторон будет иметь некое промежуточное значение по высоте. И хотя полный объем воды в системе не изменился, произошло изменение в распределении воды в пределах системы, которое привело к уравниванию давлений в системе.

Изменив некоторые ключевые слова, мы получим высказывание, имевшее место ранее: «Хотя полная теплота системы не изменилась, произошло изменение в распределении теплоты в пределах системы, которое привело к уравниванию температуры». (Мы проводим аналогию между объемом/давлением и теплотой/температурой.)

Если мы подумаем о температуре как о своего рода движущей силе, направляющей поток теплоты аналогично тому, как давление жидкости направляет поток воды, то нам покажется очень естественным, даже очевидным, что эта теплота должна течь из области высокой температуры к области низкой температуры независимо от общего содержания теплоты в каждой области.

Давайте рассмотрим, например, грамм кипящей воды и сравним его с килограммом ледяной воды. Чтобы заморозить килограмм ледяной воды, от него требуется отобрать приблизительно 80 000 калорий теплоты. Чтобы опустить температуру грамма кипящей воды до точки замерзания, а затем заморозить, потребуется отобрать 100 плюс 80 калорий, или всего лишь 180 калорий. Любое дальнейшее охлаждение килограмма льда, полученного в первом случае, по сравнению с граммом льда, полученного в втором, потребует отбора в тысячу раз большего количества теплоты, чем от второго, на каждый градус Цельсия. Это происходит потому, что, несмотря на разницу в температурах, полная теплота, которая содержится в килограмме ледяной воды, будет намного выше, чем полная теплота, которая содержится в грамме кипящей воды.

Однако, если грамм кипящей воды добавить к килограмму ледяной воды, поток теплоты потечет от кипящей воды в ледяную воду. Направление потока теплоты определяет вовсе не разность в полном содержании теплоты. Скорее его определяет разница в температуре. И снова наша аналогия: если в связанных между собой сосудах, упомянутых выше, левый будет иметь более узкий диаметр, а правый — более широкий, то вода будет течь со стороны меньшего объема к области большего объема. Не разница в полном объеме, но разница в давлении будет диктовать направление потока воды.

Скорость, с которой вода будет течь из одной части системы к другой, будет зависеть от величины разности давлений. Сначала, когда мы откроем вентиль на трубке, вода потечет быстро, но по мере того, как разность давлений по обе стороны трубки будет уменьшаться, эта скорость (или «расход жидкости») также упадет. Расход становится все меньше по мере того, как падает разница в давлениях и обращается в нуль, как только вода «находит свой уровень» и разница в давлениях исчезает.

Быстрый переход