Так, в солнечном спектре есть явные линии поглощения натрия (Фраунгофер обозначил их как «линию D»), и это — убедительное свидетельство присутствия натрия в солнечной атмосфере.
Таким образом в Солнце были найдены различные элементы. Один из них, гелий, был даже обнаружен за поколение до того, как его присутствие было обнаружено на Земле. Теперь можно определить даже состав далеких звезд. Поскольку детали спектроскопических исследований небес лучше описаны в учебнике астрономии, достаточно будет в завершение просто подчеркнуть: они ясно показали, что небесные тела состоят из тех же элементов, что и Земля, хотя и не обязательно в тех же пропорциях.
А еще они показали, как опасно устанавливать пределы человеческих возможностей. Французский философ Огюст Комте, пытаясь привести пример абсолютного предела, наложенного на познания человека, сказал, что человек никогда не будет знать, из чего состоят звезды. Если бы он прожил на несколько лет больше, он бы увидел, как его абсолютный предел легко превзойден.
Дифракция
Открытие, что белый цвет на самом деле есть смешение множества цветов, поставило перед физиками новые серьезные вопросы. Пока свет воспринимался как нераздельный чистый феномен, геометрической оптики было достаточно. Можно было рисовать линии, представляющие лучи света, и феномены отражения и преломления можно было анализировать, не принимая в расчет природу света. Этот вопрос оставался философам.
Если же принять свет как смесь цветов, становится необходимостью искать объяснения того, каким образом свет одного цвета отличается от другого. Для этого следовало рассмотреть вопрос о природе света, как такового, — так родилась физическая оптика.
Как было указано в начале книги, есть два пути решить вопрос о воздействии на расстоянии. Один — это предположить некие частицы, стремящиеся сквозь пространство, которое рассматривается как пустое, а второй — предположить некие волны, катящиеся сквозь пространство, которое не является полностью пустым. Во второй половине XVII века для света предлагались оба типа объяснения.
Наиболее явная из двух альтернатив — теория частиц, которую поддерживал сам Ньютон. Для начала — она объясняет прямолинейное распространение света. Предположим, что светящиеся объекты суть постоянно горящие крошечные частицы, разлетающиеся во всех направлениях. Если эти частицы считать не имеющими массы, то светящееся тело не должно терять вес из-за того, что оно светится, и на свет не будет действовать сила гравитации. Не встречая препятствий, свет, если на него не действует сила притяжения, должен двигаться по прямой с постоянной скоростью, как того требует первый закон Ньютона (см. ч. I). Частицы света должны останавливаться и поглощаться непрозрачными препятствиями, а частицы, пролетевшие мимо препятствия, должны создавать резкую границу между освещенной областью и областью, находящейся в тени от препятствия.
Для Ньютона альтернатива в виде волновой теории была неприемлема. В то время ученым были знакомы только волны на воде и звуковые волны (см. ч. I), а они не обязательно движутся по прямой и не приводят к образованию резких теней. Звуковые волны обтекают препятствия, потому что, находясь за углом, мы все равно слышим звук; и на воде волны заметно обходят препятствие, например плывущее бревно или дерево. Казалось разумным предположить, что эти свойства характеризуют волны в целом.
Но и теория частиц имела узкие места. Пучки света могут пересекаться под любым углом, не воздействуя друг на друга в плане направления или цвета, что означает, что частички света, видимо, не сталкиваются и не отскакивают друг от друга, как это должны делать любые частицы. Более того, несмотря на оригинальные гипотезы, так и не нашлось удовлетворительного объяснения, почему некоторые частицы света дают ощущение красного, другие — зеленого и т. |