д. Конечно, частицы должны при этом чем-то отличаться друг от друга, но чем?
Некоторые из современников Ньютона приняли волновую теорию, которую отрицал сам Ньютон. Самым энергичным сторонником волновой теории в XVII веке был голландский физик Кристиан Хайгенс (1629–1695). У него не было реального свидетельства в пользу волн, но он выбивался из сил, чтобы доказать, что волны можно рассматривать таким образом, чтобы они соответствовали фактам геометрической оптики. В 1678 году он предположил, что, когда фронт волны занимает определенную линию, каждая точка на фронте выступает в роли источника круговых волн, распространяющихся независимо. Эти волны сливаются, и можно провести линию по касательной к бесчисленному множеству маленьких кругов с центрами в каждой точке изначального фронта волны. Такая касательная является новым фронтом волны, который служит отправной линией для следующего бесконечного количества круговых волн, к которым можно нарисовать еще одну общую касательную, и т. д.
Если анализировать волны таким образом, по принципу, который сейчас называется принципом Хайгенса, видно, что фронт волны будет распространяться вперед по прямой (по крайней мере, что касается отдельной его части) и будет отражен под углом отражения, равным углу падения, и т. д. Будучи нематериальными, эти световые волны не будут, пересекаясь, воздействовать друг на друга (и действительно, звуковые волны и волны в воде могут пересекаться, не влияя друг на друга).
Итак, казалось, что можно многое сказать и за и против каждой теории. Следовательно, нужно взглянуть на места, в которых две теории различаются, и посмотреть, какая из них соответствует природе описываемого ими феномена. Такие наблюдения помогут отбросить ту или другую теорию (а может, и обе). Этот метод обычно используется, когда теории конфликтуют или пересекаются друг с другом.
Например, теория Хайгенса могла объяснить преломление при определенных условиях. Предположим, что прямой фронт волны под углом попадает на плоскую стеклянную поверхность. Один край фронта волны первым ударяется о стекло, но предположим, что его продвижение замедляется, когда он входит в стекло. В этом случае, когда о стекло ударяется следующий участок фронта, он догоняет предыдущий, потому что двигался сквозь воздух, а первый — медленнее, сквозь стекло. Каждый участок фронта волны, попадая в стекло, замедляет движение, и его догоняет последующий. Таким образом преломляется весь фронт волны и в результате входит в стекло под меньшим углом к нормали. Выходя из стекла, первая порция вновь набирает скорость и отрывается от тех порций, которые еще находятся в стекле. Выходящий свет возвращается к своему изначальному направлению.
Тут можно провести аналогию со строем солдат на марше, которые под углом сходят с дороги на вспаханное поле. Сходящие с дороги солдаты, естественно, замедляют ход; те, кто первыми вступают на поле, первыми замедляются, и весь строй (если они не будут специально выправляться) должен будет изменить направление марша по направлению к нормали, проводимой к границе между дорогой и полем.
Так волновая теория может объяснить преломление, предполагая, что скорость света в стекле меньше, чем в воздухе. Делая дальнейшие предположения, она может объяснить также и явление спектра. Если свет — форма волны, то у него должна быть длина волны (расстояние от гребня одной волны до гребня другой, см. ч. I). Тогда предположим, что эта длина волны меняется в зависимости от цвета, будучи самой длинной на красном краю спектра и самой короткой на фиолетовом краю. Тогда логично будет предположить, что короткие волны резче тормозятся, входя в стекло из воздуха, чем длинные. (Опять же, продолжая аналогию: марширующий солдат, у которого короткие шаги, большее количество раз увязнет во вспаханном поле, чем солдат, у которого шаги длиннее, если они будут проходить одно и то же расстояние. Тогда солдат с короткими шагами отстанет больше, и марширующий строй, если не будут предприниматься никакие попытки исправить положение, разобьется на группы, марширующие в слегка отличающихся направлениях в зависимости от длины своего шага. |