Изменить размер шрифта - +
Интерференцию можно наблюдать на примере волн в воде, и именно она приводит к эффекту пульсации, например (см. ч. I) в случае звуковых волн. Янг смог продемонстрировать, что волновая теория позволяет рассчитать интерференцию именно так, как ее наблюдали.

Более того, по расстоянию между темными и светлыми полосами интерференции Янг смог высчитать длину световой волны. Если луч света от одного конуса влияет на луч света из второго, усиливая его, то оба луча должны быть в фазе, а это означает, что разница расстояний от точки усиления света на экранной поверхности до одной и другой прорези должна быть кратна длине волны.

Выбирая полосы интерференции, требующие все меньшей разницы расстояний, Янг смог высчитать длину единичной волны и обнаружил, что это величина порядка одной пятитысячной дюйма, достаточно малая, чтобы эффект дифракции был труднодоступен для наблюдения (см. гл. 4). Далее, оказалось возможным продемонстрировать, что длина волны красного света оказалась примерно в два раза длиннее фиолетового, что отвечает требованиям волновой теории при объяснении появления спектра. 

В метрической системе удобным оказалось измерять длину волны света в миллимикронах, где миллимикрон (мμ) — это одна миллиардная метра (10<sup>–9</sup> м) или одна десятимиллионная сантиметра (10<sup>–7</sup> см). В этих единицах спектр простирается от 760 мμ для самой длинной волны красного цвета до 380 мμ. для самой короткой волны фиолетового цвета. Положение любой линии спектра может быть определено через длину ее волны.

Одним из тех, кто произвел особенно точные измерения длины волны линий спектра, был шведский астроном и физик Лидере Йонас Ангстрем (1814–1874), совершивший это в середине XVIII века. Он использовал единицу измерения в одну десятую миллимикрона. Эту единицу измерения назвали ангстремом (Å) в его честь. Таким образом, спектр варьируется от 7600 до 3800 Å.

Длина волны для различных цветов примерно (поскольку цвета плавно переходят друг в друга без резких границ) такова: красный — 7600–6300 Å, оранжевый — 6300–5900 Å, желтый — 5900–5600 Å, зеленый — 5600–4900 Å, голубой и синий — 4900–4500 Å, фиолетовый — 4500–3800 Å.

Раскаленный пар натрия дает яркую линию желтого, в то время как поглощение натрия производит темную линию в том же самом месте. Эта линия, которая считалась единой и которая была обозначена Фраунгофером как D, по применении спектроскопов более высокого качества была разделена на две близкие друг к другу линии, D<sub>1</sub> и D<sub>2</sub>. Длина волны первой — 5896 Å, последней — 5890 Å. Таким же образом, линии С и F по Фраунгоферу (красный и синий цвета) производятся поглощением водорода и имеют длину волны соответственно 6563 Å и 4861 Å. (Кстати, именно Ангстрем первым показал посредством своих спектральных линий, что в Солнце есть водород.) В результате все линии спектра, производимые любым элементом как через поглощение, так и через испускание, можно точно установить.

Несмотря на всю убедительность (для нас, оглядывающихся назад) эксперимента Янга, волновая теория света тогда не получила признания. Однако на протяжении всего XIX века постоянно появлялись дополнительные свидетельства в пользу световых волн, и различные явления, трудно объяснимые в рамках теории частиц, получали готовое и элегантное решение в рамках волновой теории. Возьмем, к примеру, цвет неба…

Когда свет, до того двигавшийся без помех, встречает на своем пути препятствие, то, что происходит с ним, зависит от размеров препятствия. Если диаметр препятствия более 1000 мμ, то свет поглощается, и световой луч на этом перестает существовать, по крайней мере как свет. Если же диаметр препятствия менее 1 мμ, то свет проходит неизмененным.

Быстрый переход