С их использованием стало возможно просчитать природу взаимоотношений электричества и магнетизма в разных условиях.
Для того чтобы уравнения были верны, кажется, невозможно рассматривать отдельно электрическое или магнитное поле. Оба они всегда присутствуют вместе, действуя под определенным углом друг к другу, поэтому можно говорить о существовании единого электромагнитного поля.
Далее, рассматривая возможность применения своих уравнений, Максвелл обнаружил, что изменяющееся электрическое поле должно производить изменяющееся магнитное поле, которое, в свою очередь, должно производить меняющееся электрическое поле, и т. д.; таким образом, они чередуются, и поле распространяется наружу во всех направлениях. Результатом этого является излучение, обладающее волновыми свойствами. Короче, Максвелл предсказал существование электромагнитных волн, имеющих частоту, равную той, с которой сжималось и расширялось электромагнитное поле.
Максвеллу удалось даже рассчитать скорость, с которой должна двигаться такая электромагнитная волна. Он сделал это, приняв во внимание отношение определенных значений в уравнениях, описывающих силы, действующие между электрическими зарядами и между магнитными полюсами. В результате он получил значение — около 300 000 километров в секунду — значение скорости света, и Максвелл не мог счесть это всего лишь совпадением. Электромагнитное излучение оказывалось не теоретическим понятием его уравнений, а реально существующим явлением. Свет и должен являться электромагнитным излучением.
Уравнения Максвелла послужили нескольким общим целям. Во-первых, для картины «вселенной полей» они стали тем же, чем законы Ньютона для картины «механической Вселенной». На самом деле Максвеллу его уравнения удались даже лучше, чем Ньютону его законы. Последние оказались лишь приблизительными, верными лишь для низких скоростей и коротких расстояний. Чтобы применяться более широко, им требовались уточнения, которые предоставила эйнштейновская теория относительности. Уравнения же Максвелла пережили все перемены, внесенные теорией относительности и квантовой теорией; в свете нового знания они оказались такими же верными, как и век назад, когда были выведены.
Во-вторых, уравнения Максвелла, в сочетании с позднейшим развитием квантовой теории, вроде бы наконец-то дали нам удовлетворительное объяснение природы света (именно этот вопрос занимает большую часть этой книги и является ее главной темой). Ранее (см. гл. 8) я писал, что, даже если приписать свету частицеобразные свойства, все равно у него остаются и волнообразные свойства, и задавал вопрос, что же может быть их причиной. Как мы видим теперь, эти волнообразные свойства являются вибрацией электромагнитного поля. Электрическая и магнитная составляющие этого поля направлены под правильным углом друг к другу, а вся волна в целом движется в направлении под правильным углом к обеим составляющим.
Максвеллу, придерживавшемуся теории эфира, казалось, что к вибрации электромагнитного поля приводили волнообразные искажения эфира. Однако уравнения Максвелла превзошли даже своего творца. Теория эфира ушла в прошлое, а электромагнитные волны остались, поскольку теперь вибрацию поля можно представлять как вибрационные изменения в геометрии пространства, что не требовало присутствия материи. Больше не требовалось, чтобы для создания световых волн что-либо колебалось.
Из четырех явлений, которые со времен Ньютона считались примерами воздействия на расстоянии, как минимум три оказались благодаря уравнениям Максвелла разными гранями одного и того же явления. Электричество, магнетизм и свет были объединены в единое электромагнитное поле. Только сила гравитации не была в него включена. Учитывая важную разницу между гравитацией и электромагнетизмом, Максвелл не стал пытаться включить в свои уравнения и гравитационное поле. После его смерти такие попытки предпринимались, в частности, это делал Эйнштейн во второй половине жизни. |