Изменить размер шрифта - +

Однако выводы Эйнштейна в общем не были приняты физиками, и вопрос о «единой теории полей» пока остается открытым.

Максвелл считал, что процессы, приводящие к электромагнитному излучению, могут служить и для порождения волн любой частоты, а не только световых и близких к ним ультрафиолетовых и инфракрасных. Он предсказал, что электромагнитное излучение, во всем похожее на свет, может существовать на всех частотах ниже и выше световых.

К сожалению, Максвелл не дожил до подтверждения своего прогноза, поскольку умер от рака в 1879 году достаточно рано — ему было 48 лет. Только 9 лет спустя, в 1888 году, немецкий физик Генрих Рудольф Герц (1857–1894) обнаружил электромагнитное излучение с очень низкой частотой — излучение, которое мы сейчас называем радиоволнами. Это полностью совпало с предположениями Максвелла и было принято как подтверждение его уравнений. В 1895 году другой немецкий физик, Вильгельм Конрад Рентген (1845–1923), открыл электромагнитное излучение с очень высокой частотой, мы теперь называем это рентгеновскими лучами.

Последние 20 лет XIX столетия оказались также временем фундаментального прогресса в изучении электричества. Электрический ток пропускали через частичный вакуум, и электроны, вместо того чтобы оставаться скрытыми в металлической проводке или привязанными к перемещающимся атомам и группам атомов в растворе, проявили себя в качестве самостоятельных частиц.

Изучение новых частиц и излучений произвело фактическую революцию в физике и технологии электричества — столь яркую, что о ней говорят как о второй научной революции (первой принято называть ту, которая началась с Галилея).

И именно о второй научной революции и пойдет речь в III части этой книги.

 

 

 

 

Часть третья.

ЭЛЕКТРОН, ПРОТОН И НЕЙТРОН

 

Глава 1.

АТОМ

 

В первых частях книги я рассказывал о тех разделах физики, где можно было пренебречь внутренней структурой вещества. В частности, я говорил о гравитации. Любое небесное тело, обладающее такой же массой, как Земля, будет иметь такую же, как и у Земли, силу притяжения независимо от того, из чего это тело состоит. Более того, когда мы изучаем законы гравитационного взаимодействия тел, нам даже нужно пренебречь внутренней структурой этих тел. Например, кирпич — это единое целое, и перемещается он как единое целое, поэтому при изучении перемещения кирпича нам не важен его состав. Можно вывести очень важные законы электромагнитных волн, наблюдая за увеличением заряда на конце пробки или исследуя магнитное поле постоянного магнита, и для этого совсем не обязательно изучать внутреннюю структуру самого магнита. Даже тепло можно принять за некую невидимую жидкость, перетекающую от одного предмета к другому, и на основе этого выявить законы термодинамики.

Впрочем, если вы прочитали обе предыдущие части, думаю, для вас стало очевидно, что для более глубокого понимания феномена нам все же необходимо перейти на уровень микрочастиц.

Так, гораздо легче понять свойства газов, если представить газ как совокупность молекул (см. ч. I).

В этом третьем томе я более подробно расскажу о внутренней структуре вещества и энергии и попытаюсь показать, как человек путем физических опытов открыл целый мир мельчайших частиц, который мы не можем увидеть, и как много это открытие дало тому миру, что мы видим вокруг.

 

 

Происхождение атомизма

 

Понятие атомизма (так можно назвать теорию о том, что вся материя состоит из атомов) впервые ввели древние греки, основываясь в своих суждениях не на результатах опытов, а на философских выводах.

Наглядно подтвердить верность теории атомизма невозможно, так как для человека практически любое вещество является единым целым: мы ведь видим лист бумаги или каплю воды, а не частицы, из которых они состоят.

Быстрый переход