Именно этот факт привел к появлению очень важных электротехнических устройств.
Например, у молекулы аммиака (NH<sub>4</sub>) 2 энергетических уровня, разделенные запрещенной энергетической зоной, ширина которой соответствует размеру заряда фотона, необходимого для излучения микроволны частотой 24 млрд. Гц, то есть 1,25 см.
Разницу между энергетическими уровнями можно рассмотреть с геометрической точки зрения. Тогда 3 атома водорода молекулы аммиака можно представить как три вершины равностороннего треугольника, а атом азота будет располагаться на некотором расстоянии от центра этого треугольника. При изменении количества электронов на энергетическом уровне атом азота перейдет на другую сторону треугольника сквозь его плоскость. Таким образом, молекулу аммиака можно заставить вибрировать с частотой 24 млрд. раз в секунду.
Этот период колебания повторяется с чрезвычайной точностью. Точность эта гораздо выше, чем у любого созданного человеком устройства, и даже точнее движения космических тел. На основе такой молекулы можно создавать высокоточные атомные часы, погрешность которых — всего одна секунда на 100 000 лет.
Теперь рассмотрим только лишь энергетические уровни. При прохождении микроволн через газообразный аммиак молекулы поглощают часть микроволновой энергии и поднимаются на уровень выше (из центра к периферии. — Пер.).
Но что происходит с теми молекулами, которые уже находятся на высшем уровне? В 1917 году Эйнштейн выявил, что когда фотон определенного размера ударяется о такую молекулу, то молекула переходит на уровень ниже, двигаясь в том же, что и фотон, направлении и испуская фотон излучения того же размера. То есть под действием микроволнового излучения молекулы аммонии будут либо подниматься с нижних уровней на верхние, либо опускаться с верхних на нижние. При нормальных условиях последнее будет происходить реже, так как на верхнем уровне будет находиться лишь небольшое количество молекул.
Предположим, что возможно каким-либо способом переместить большую часть молекул на верхний уровень. Тогда фотон микроволнового излучения толкнет молекулу на уровень ниже и та выделит еще один фотон. Оба фотона ударятся еще о две молекулы, и те выделят еще два фотона. Эти четыре фотона столкнутся с еще двумя молекулами, и получится уже 8 фотонов и т. д. Исходный фотон породит целую лавину фотонов одинакового размера и двигающихся в одном направлении.
Над разработкой подобного устройства одновременно работали и американские, и советские ученые, однако пальма первенства принадлежит все же американскому физику Чарлзу Таунсу. В 1953 году он разработал метод, с помощью которого возбужденные молекулы аммиака можно изолировать и подвергнуть стимуляции с помощью микроволнового излучения для усиления входящего излучения, то есть входит один фотон, а выходит целый поток.
Такой прибор называется квантовый генератор СВЧ-диапазона, или по-английски мазер. В последующие годы термин «мазер» вытеснил термин «атомные часы».
Вскоре был разработан и твердотельный мазер, состоящий из помещенного в магнитное поле парамагнитного материала (см. ч. II). Электрон в таком мазере может находиться лишь на одном из двух энергетических уровней: если спин электрона совпадает с направлением магнитного поля, то он занимает нижний уровень, а если электрон вращается в противоположную сторону, то он занимает верхний уровень. Под действием магнитного поля электроны постепенно выталкиваются с верхнего уровня на нижний. При переходе на нижний уровень все электроны выделяют излучение одной и той же частоты (монохроматическое излучение).
Первые мазеры (и газовые, и твердотельные) не могли работать непрерывно. Такой мазер сначала нужно было накачать электромагнитным излучением, затем мазер выдавал вспышку излучения, после чего его было необходимо накачивать заново.
Для преодоления этой проблемы американский физик Николас Бломберген использовал системы из трех уровней. |