В начале своих опытов Резерфорд поместил источник альфа-частиц в закрытый цилиндр, один конец которого был покрыт слоем сульфида цинка.
Когда альфа-частица ударяется о сульфид цинка, возникает вспышка люминесценции, или сцинтилляция (мерцание). Это происходит потому, что за счет кинетической энергии альфа-частицы происходит возбуждение молекулы цинка, а возвращаясь в свое прежнее состояние, молекула испускает фотон видимого света. (Впервые это явление наблюдал Беккерель в 1899 году. Позже такой способ стали применять при производстве светящихся объектов. Смесь небольшого количества соединения радия с сульфидом цинка или некоторых других веществ дает свечение, легко заметное в темноте. Самым «писком» 1920-х годов стали часы, на циферблатах которых цифры были нанесены такими вот люминесцентными материалами.)
Если рассматривать мерцающий экран в темноте (когда глаза привыкли к темноте и легко замечают даже слабый свет) с помощью лупы, то можно увидеть каждую вспышку в отдельности. Учитывая, что каждая вспышка вызвана попавшей в экран альфа-частицей, то, подсчитав количество вспышек в заданной области за определенное время, можно определить скорость распада некоторой массы радиоактивного вещества и с помощью этого выяснить, например, период полураспада данного вещества. Прибор, который Резерфорд использовал в своих экспериментах, получил название сцинтилляционный счетчик.
В современных сцинтилляционных счетчиках используются более эффективные сцинтилляторы, а вспышки подсчитываются с помощью фотоэлементов и электроники.
Если же в трубке присутствует газ (например, углекислый или кислород), количество вспышек на экране становится меньше. Это происходит потому, что, сталкиваясь с молекулами газа, альфа-частицы замедляются и некоторые из них присоединяют электроны и становятся обычными атомами гелия. Поэтому до экрана «добирается» меньше частиц, и уровень их кинетической энергии ниже.
Однако если заполнить трубку водородом, то на экране время от времени начинают появляться очень яркие вспышки. Это можно объяснить тем, что иногда альфа-частица сталкивается с ядром водорода (то есть с протоном) и тот, оставив свой электрон, устремляется вперед. В этом случае скорость протона будет гораздо выше, чем у тяжелых ядер углерода и кислорода, и достаточной для того, чтобы при его столкновении с экраном возникла яркая вспышка.
Резерфорд обнаружил, что если заполнить трубку азотом, то на экране также появляются фотонные вспышки. Альфа-частица не могла толкнуть ядро атома азота сильнее, чем ядра углерода или кислорода, но вполне могла выбить из него протон, который и устремлялся к экрану.
В 1925 году английский физик Патрик Блэкетт (1897–1974) доказал это. Он бомбардировал альфа-частицами атомы азота внутри камеры Вильсона. В большинстве случаев альфа-частица оставляла за собой след из водяных капель, не сталкиваясь ни с одним ядром, и, когда ее энергия уменьшалась, присоединяла электроны и исчезала. Однако одна из 350 000 альфа-частиц все же встречала на своем пути препятствие.
В этом случае след ее траектории раздваивался на конце. Один конец был тоньше и довольно длинный. Это — ионизирующий протон, с меньшим, чем у альфа-частицы, зарядом (+1 против +2). Второй след был толстый и короткий. Это — отскочившее ядро атома азота, лишенное большинства электронов, благодаря чему оно получило высокий положительный заряд и соответственно сильные ионизирующие свойства. Тем не менее оно двигалось медленно и, быстро набрав электроны, лишилось этих свойств. Никаких следов альфа-частицы не было, значит, она присоединилась к ядру атома азота.
В 1919 году Резерфорд стал первым, кому удалось изменить структуру атомного ядра, то есть провести первую искусственную ядерную реакцию. (Это что-то вроде «ядерной химии»: нуклоны перераспределяются аналогично тому, как перераспределяются электроны в процессе обычной химической реакции. |