В одной килокалории 4,186∙10<sup>10</sup> эрг, значит, в результате полного синтеза 1 г водорода–2 выделяется 5,7∙10<sup>7</sup> килокалорий.
Из 7000 атомов водорода только один является атомом водорода–2. При условии, что этот единственный атом весит в два раза больше, чем остальные 6999, в 1 л воды, весящем 1000 г, содержится 125 г водорода, 43 мг которых являются атомами водорода–2. Получается, что в результате синтеза всего содержащегося в 1 л воды водорода–2 высвобождается 2,5∙10<sup>6</sup> килокалорий.
Это означает, что в результате синтеза водорода, содержащегося в 1 л воды, выделяется столько же энергии, сколько выделяется при сгорании 300 л бензина.
Учитывая огромные размеры Мирового океана (из вод которого можно легко получать водород–2), запасы водорода–2 на Земле составляют около 80 000 куб. км. Из этого количества водорода–2 можно получить столько же энергии, сколько выделяется при сгорании бензина, объем которого в 450 раз превышает объем земного шара.
Очевидно, что, если найти безопасный способ «приручить» реакцию синтеза и использовать ее на практике, человечество будет обеспечено энергией на многие миллионы лет вперед. И довершает эту картину беззаботного будущего тот факт, что продуктами реакции синтеза водорода–2 являются безопасные и стабильные водород–1, гелий–3 и гелий–4 плюс несколько легко поглощаемых нейтронов.
Единственной загвоздкой на пути к раю является то, что для начала реакции синтеза водород–2 нужно нагреть до 100 000 000 °С. Эта температура намного выше температуры внутри Солнца (15 000 000 °С), но у Солнца есть одно преимущество: водород там находится под очень высоким, недостижимым в земных условиях давлением.
На Земле любой газ, нагретый до такой температуры, просто расширится до ненасыщенного пара и тут же охладится. На Солнце этого не происходит из-за его огромной массы, вызывающей силу притяжения, достаточную для удержания газов даже при 15 000 000 °C.
На Земле столь мощной силы притяжения достичь конечно же невозможно, поэтому для удержания газа нужно использовать какие-то другие методы. Контейнер не подойдет, так как любой газ при контакте со стенками сосуда тут же охладится… или расплавит контейнер. Невозможно одновременно нагревать газ до необходимой для начала синтеза температуры и удерживать его сосудами из твердых веществ.
К счастью, существует и другой метод. С повышением температуры атомы «снимают» свои электроны и газ распадается на заряженные частицы: отрицательно заряженные электроны и положительно заряженные ядра. Вещество, состоящее из электрически заряженных частиц, а не из целых атомов, называется плазмой.
Физика плазмы привлекла интерес ученых в основном из-за возможности управления термоядерным синтезом. Однако сегодня становится ясно, что большая часть Вселенной состоит из плазмы. Плазмой являются, например, звезды. На Земле плазма также встречается: шаровая молния — не что иное, как плазма, на время ставшая стабильной. Плазма присутствует и в искусственных устройствах, например в неоновых лампах.
Состоящей из заряженных частиц плазме с помощью магнитного поля можно придать форму «нематериального» контейнера. Сегодня физики делают попытки создать магнитное поле, способное достаточно долго удерживать плазму в стабильном состоянии, и нагреть ее до необходимой для начала термоядерной реакции температуры. Согласно подсчетам, при использовании газа, плотность которого при нормальной температуре составляет всего лишь <sup>1</sup>/<sub>100</sub> плотности атмосферы, оказываемое на магнитное поле давление в критической точке в момент начала термоядерной реакции составит 100 атмосфер.
Требования довольно строги, и ученым пока не удалось добиться успехов. За минувшие десятилетия удалось получить температуру 20 000 000 °С и создать магнитное поле, способное выдержать необходимое давление. |