Такая «сверхсветовая» частица отбрасывает контровое излучение, аналогично тому, как сверхзвуковая пуля отбрасывает назад конус звуковых волн. Это явление было обнаружено в 1934 году советским ученым Павлом Алексеевичем Черенковым (1904–1990) и получило название черепковское излучение.
По длине волны черенковского излучения, его яркости и направлению можно определить массу, заряд и скорость движущейся частицы. В конце 1940-х годов американский физик Иван Геттинг предложил схему черенковского счетчика, позволяющего по излучению выделять частицы высокой энергии из потока обычных частиц. Черенковские счетчики дали ученым массу сведений о быстрых частицах.
В 1940-х годах началось исследование космического излучения с помощью высотных шаров и ракет. На больших высотах удалось зафиксировать первичное излучение, то есть сами космические частицы, а не излучения, появляющиеся в результате столкновения космических частиц и атомных ядер. Оказалось, что большая часть (около 80%) космических лучей являются частицами очень высокой энергии, а большая часть остальных — альфа-частицами. Около 2,5% составляют ядра более тяжелых элементов, вплоть до железа.
Все это указывало на то, что космические частицы являются голыми ядрами основного вещества, из которого состоит все во Вселенной. Элементы космических лучей содержатся в пропорции, схожей с пропорцией элементов внутри большинства звезд, например Солнца.
В действительности Солнце является одним из источников космических частиц. Мощные солнечные вспышки приводят к образованию космических лучей, падающих на Землю. Однако Солнце — не единственный и далеко не самый мощный источник космических лучей, так как иначе они падали бы на Землю исключительно со стороны Солнца, а этого не происходит. Более того, энергия испускаемых Солнцем космических частиц сравнительно невысока.
Встает вопрос: каким образом космические частицы получают свою огромную энергию? В результате ядерных реакций не выделяется такого количества энергии. Даже при полном переходе массы в энергию энергия космических лучей все равно выше.
Предположим, что космические лучи являются протонами и ядрами других элементов пусть высокой, но не необыкновенно высокой энергии. Эти частицы разгоняются каким-либо естественным ускорителем «космического масштаба». Магнитные поля солнечных пятен могут разгонять частицы до средних скоростей. Звезды с более интенсивными магнитными полями или даже общее магнитное поле галактики способны ускорять частицы и до более высоких скоростей.
Галактику в этом отношении можно рассматривать как гигантский циклотрон, по которому вихрем проносятся протоны и атомные ядра, набирая энергию и двигаясь по расширяющейся спирали. Если они не сталкиваются с каким-либо материальным объектом, то через некоторое время уровень их энергии возрастает настолько, что они покидают галактику.
Земля прерывает разгон этих частиц. Самыми быстрыми частицами, скорее всего, являются частицы, прилетевшие к нам из других галактик. Возможно,, что некоторые галактики с необыкновенно интенсивными магнитными полями могут ускорять космические частицы до больших скоростей, чем наши, и могут являться важными источниками самых быстрых частиц. Однако обнаружить такие галактики пока не удалось.
Позитрон
Давайте вспомним, какие микрочастицы были известны в начале 1930-х годов, когда ученые впервые заговорили о природе космического излучения. Итак, были конечно же протоны, нейтроны и электроны, кроме того, была еще безмассовая «частица» фотон, формирующая электромагнитное излучение.
Фотон позволяет не утруждать себя размышлениями о действии электромагнитного излучения на расстоянии (см. ч. 11) и дает почву для обоснования еще одного действующего на большом расстоянии явления — гравитации.
Некоторые физики полагают, что гравитационное взаимодействие включает в себя испускание и поглощение частиц, которые они называют гравитонами. |