Поэтому в некоторых случаях удобнее обозначать античастицу полосой над символом. Таким образом, электрон обозначается как e, а позитрон как ē.
Позитроны определенным образом связаны с радиоактивностью. Для того чтобы понять, как именно, давайте вспомним, как с радиоактивностью связаны электроны.
Когда количество нейтронов слишком велико и ядро начинает терять устойчивость, положение можно исправить, преобразовав нейтрон в протон путем испускания электрона. В полной записи (с обозначением массы и заряда) этот процесс выглядит так:
В результате образования еще одного протона атомное число нуклида увеличивается на единицу, однако массовое число остается неизменным, так как протон образуется за счет исчезновения одного нейтрона.
Возьмем, например, фосфор, единственным стабильным изотопом которого является фосфор–31 (15 протонов, 16 нейтронов). Радиоактивный фосфор–32 (15 протонов, 17 нейтронов) в силу избытка нейтронов должен испустить один электрон в виде бета-частицы, что и происходит. Фосфор–32 испускает бета-частицы и превращается в стабильный изотоп серы–32 (16 протонов, 16 нейтронов).
Все встречающиеся в природе радиоактивные изотопы, как долгоживущие, так и живущие недолго, обладают избытком нейтронов и в процессе перестройки ядра для достижения устойчивости испускают электроны (а также альфа-частицы).
А что произойдет, если искусственным путем создать радиоизотоп с дефицитом нейтронов в ядре? Для достижения устойчивости необходимо увеличить количество нейтронов за счет протонов. Этот процесс можно описать формулой, обратной формуле 13.1. Происходит поглощение электрона протоном, аналогичное К-захвату (см. гл. 8).
Однако существует вероятность и другого процесса. В то время как нейтрон может превратиться в протон путем испускания электрона, протон, по аналогии, может превратиться в нейтрон путем испускания позитрона:
Испускание позитрона (или положительно заряженной бета-частицы) приводит к обратному испусканию электрона результату. Атомное число нуклида уменьшается на единицу вследствие исчезновения протона, а массовое число остается опять-таки неизменным, так как на месте протона появляется электрон.
Фосфор–30 — самый первый полученный искусственным путем радиоизотоп — имел дефицит нейтронов в ядре; В то время как ядро стабильного фосфора–31 состоит из 15 протонов и 16 нейтронов, ядро фосфора–30 состоит из 15 протонов и всего лишь 15 нейтронов. Фосфор–30, период полураспада которого 2,6 мин, испускает позитрон и превращается в стабильный кремний–30 (14 протонов, 16 нейтронов). Получив фосфор–30, супруги Жолио-Кюри предвосхитили открытие позитрона Андерсоном.
В лабораторных условиях было получено большое количество излучающих позитроны радиоизотопов. Наиболее известным из них является, пожалуй, углерод-11, использовавшийся в качестве изотопного маркера вплоть до открытия углерода–14.
В природе позитроны образуются в основном в ходе реакций ядерного синтеза с участием водорода на Солнце и других звездах. В процессе слияния четырех ядер водорода–1 в одно ядро гелия–4, которое имеет 2p/2n структуру, два протона преобразуются в нейтроны, испуская два позитрона:
Аннигиляция вещества
Электрон является стабильной частицей. Это означает, что самопроизвольно никаких изменений в нем не происходит. Согласно закону сохранения электрического заряда общий заряд остается неизменным. Электрон является самой малой частицей с отрицательным зарядом, и ученые предполагают, что меньшей отрицательной частицы, скорее всего, не существует. Распадаясь, электрон должен стать частицей с еще меньшей массой, а в этом случае для электрического заряда, так сказать, просто не останется места, поэтому электроны и не распадаются. |