Поэтому, если какое-то явление не происходит, несмотря на долгие и сложные исследования, однако оно не «запрещено» ни одним из законов сохранения, значит, нужно вывести новый закон. С другой стороны, если вопреки какому-либо закону явление все же происходит, значит, этот закон действителен только в определенных условиях и нужно вывести более общую формулу.
Было обнаружено, что при взаимной аннигиляции электронов и позитронов выделяются гамма-лучи, энергия которых в точности соответствует расчетной. Это — одно из самых красивых доказательств верности специальной теории относительности Эйнштейна, частью которой является формула e = mc<sup>2</sup>.
Должен существовать и обратный процесс. Энергия должна каким-то образом переходить в массу. Энергия не может образовать электрон или позитрон, так как неоткуда взяться заряду. Нельзя создать и лишь один положительный или отрицательный заряд.
Однако электрон и позитрон могут образоваться одновременно. Общий заряд такой электронно-позитронной пары все равно остается равным нулю. Для этого необходим гамма-луч мощностью по меньшей мере 1,02 Мэв, а в случае использования более мощного луча избыток энергии переходит в кинетическую энергию частиц — все по Эйнштейну.
Быстрые позитроны образуются благодаря большому избытку энергии космических лучей. Именно эти частицы и являлись первыми античастицами, открытыми Андерсоном.
Когда Дирак разработал теоретическое доказательство, вылившееся в концепцию античастиц, он посчитал, что противоположной электрону частицей является протон. Однако его предположение не подтвердилось, так как электрон и протон противоположны друг другу разве только что зарядом. Масса протона, например, в 1836 раз больше массы электрона. (Почему электрон легче и почему именно в 1836 раз? Эти два вопроса являются одними из самых интересных загадок ядерной физики.)
Электрон и протон притягиваются друг к другу, как и любые другие объекты с разноименными электрическими зарядами, но они не аннигилируют. В крайнем случае протон захватывает электрон и тот занимает самый нижний электронный уровень, то есть приближается к протону на минимальное расстояние. (В случае протонно-электронной аннигиляции такого соединения просто бы не существовало.)
Электрон и позитрон, которые могут аннигилировать друг друга, также могут захватывать друг друга на какое-то время без аннигиляции. Такой атом, состоящий из движущихся по орбите друг за другом вокруг общего центра притяжения электрона и позитрона (если рассматривать как обычную частицу, не принимая во внимание проявления волновых свойств), называется позитронием.
Существуют два вида позитрониев: ортопозитроний, частицы которого имеют одноименный спин, и парапозитроний, частицы которого имеют разноименный спин. Ортопозитроний существует в среднем одну десятую долю микросекунды, после чего происходит аннигиляция, а парапозитроний и того меньше — всего одну десятитысячную микросекунды. После аннигиляции ортопозитрония образуется три протона, а после аннигиляции парапозитрония — два. В 1951 году австрийскому физику Мартину Дойчу (1917–2002) удалось обнаружить позитронии по испускаемым ими гамма-лучам.
Антибарион
В теории Дирака нет ничего из того, что можно было бы применить к электрону, но ее нельзя применить и к протону. Если у электрона есть античастица, то античастица должна быть и у протона. Антипротон взаимно аннигилируется с протоном, в результате чего, как и в случае с позитроном и электроном, образуются пары и тройки фотонов.
Однако так как масса протона в 1836 раз превышает массу электрона, а масса антипротона в 1836 раз превышает массу позитрона, энергия, выделяемая в результате аннигиляции протона и антипротона, должна быть в 1836 раз больше энергии, выделяемой при аннигиляции электрона и позитрона. Общий выход энергии составляет 1,02 ∙ 1836, то есть 1872 Мэв, или 1,872 млрд. |