Единицы измерения работы — это единицы измерения силы, умноженные на единицы измерения расстояния. В системе МКС единицей измерения работы является произведение ньютона на метр; это произведение было названо «джоулем» в честь английского физика, о котором я буду иметь случай упомянуть позже. В системе СГС единица работы получается равной дине, умноженной на сантиметр; эта единица называется «эрг» (от греческого слова, означающего «работа»). Так как ньютон равен 100 000 дин, а метр равен 100 сантиметрам, то ньютон-метр равен 100 000 раз по 100 дин-сантиметров. Другими словами, один джоуль равен 10 000 000 эргов.
Так как сила — векторная величина, может показаться, что работа, которая является произведением силы на расстояние, также должна быть вектором; это означало бы, что можно говорить о данном количестве работы, сделанной при движении направо, и том же количестве работы, сделанной при движении налево, как о равных и противоположных по знаку. Однако это не так. Для того чтобы понять — почему, рассмотрим единицы измерения работы еще раз.
Ньютон определяется как килограммометр в секунду за секунду, или кг-м/с<sup>2</sup>. Если джоуль равен ньютон-метру, то тогда он равен килограмм-метр-метру в секунду за секунду, или кг-м<sup>2</sup>/с<sup>2</sup>. Это последнее выражение может быть записано как кг-(м/с)<sup>2</sup>. Но м/с (метры в секунду) — единица скорости, а это означает, что единица работы равна единице массы, умноженной на квадрат единицы скорости, или w = mv<sup>2</sup>.
Истинно, что скорость является векторной величиной, поэтому можно было бы говорить о –v и +v, но единица работы включает в себя квадрат скорости. Как мы знаем из элементарной алгебры, квадрат положительного числа (+v) x (+v) и квадрат отрицательного числа (– v)∙(−v) положительны (+v<sup>2</sup>).
Следовательно, квадрат скорости не показывает никаких различий в знаках, и единица, которая включает в себя квадрат скорости, — не векторная, а скалярная величина (если, конечно, она не содержит других (иных, чем скорость) векторных единиц измерения).
Таким образом, мы пришли к выводу, что работа — скалярная величина.
Возвращаясь к рычагу, мы видим, что работа, потраченная на подъем валуна рычагом, та же самая, что потребовалась бы на подъем валуна без рычага. В данном случае отличается лишь распределение работы между силой и расстоянием. То же самое истинно и в том случае, когда в качестве механизма мы используем наклонную плоскость.
Допустим, что нам необходимо поднять 50-килограммовую бочку на высоту два метра на задний борт грузовика. Так как килограмм веса прикладывает направленную вниз силу, равную 9,8 ньютона, то, чтобы поднять бочку, потребуется сила общей величиной 490 ньютонов. Приложив силу, равную 490 ньютонов, на расстояние в два метра в направлении силы, мы выполним 980 джоулей работы.
Предположим вместо этого, что мы кладем доску от основания (земли) на грузовик таким образом, чтобы доска составляла угол в 30° с землей. При таких условиях длина доски от основания до грузовика только в два раза больше вертикального расстояния от земли до грузовика, или четыре метра. Сила, которая потребуется, чтобы катить бочку по доске, равна 245 ньютонам, то есть только половине силы, требуемой для прямого подъема. Эта половина силы прикладывается на расстоянии в два раза большем, но работа продолжает равняться 980 джоулям.
Чем меньше угол наклона наклонной плоскости, тем меньше сила, которая потребуется, чтобы переместить бочку, и тем длиннее расстояние, на которое она должна быть перемещена. Наклонная плоскость уменьшает силу так же, как она уменьшала скорость в опыте с силой тяжести, который выполнил Галилео. Ни наклонная плоскость, ни рычаг, ни любой другой механизм не уменьшает работу. |