Слово «кинетический» происходит от греческого слова, означающего «движение».
Так сколько же точно содержится кинетической энергии в теле, перемещающемся с некоторой скоростью, равной v? Чтобы определить это, давайте предположим, что в конце концов мы собираемся обнаружить существование закона сохранения для работы во всех ее формах. В этом случае было бы разумным утверждать, что, если мы выясним, сколько работы требуется, чтобы переместить тело с некоторой скоростью, равной v, тогда это автоматически будет означать количество работы, которую можно выполнить по отношению к некоторому другому объекту благодаря его движению с этой скоростью. Короче говоря, это будет его кинетическая энергия.
Чтобы заставить тело двигаться, во-первых, требуется приложить силу, а эта сила, в соответствии со вторым законом Ньютона, равна массе перемещающегося тела, умноженной на его ускорение: f = та. Тело будет перемещаться на некоторое расстояние, равное d, прежде чем ускорение разгонит его до скорости v, с которой мы и начали разговор. Работа, приложенная к телу, которая требуется, чтобы заставить его двигаться с этой скоростью, равна произведению силы на расстояние.
Если мы выразим силу как ma, то мы получим:
Значительно раньше, в этой книге, когда мы обсуждали эксперименты Галилео с падающими телами, мы показали, что v = at, то есть скорость, другими словами, является произведением ускорения на время. Это выражение можно легко преобразовать в t = v/a. Также при обсуждении экспериментов Галилео мы заметили, что там, где имеется однородное ускорение,
где d — расстояние, покрытое перемещающимся телом. Если вместо t в указанном выше отношении мы подставим v/a, то получим:
Давайте теперь подставим это значение для d в уравнение 7.2, которое тогда примет форму:
Это — работа, которую следует приложить к телу массой m, чтобы заставить его двигаться со скоростью v. И поэтому это — кинетическая энергия, которую содержит тело такой массы, двигающееся с такой скоростью. Если мы обозначим кинетическую энергию как e<sub>k</sub>, то можем написать:
Как я уже сказал ранее, единицы измерения работы включают в себя единицы измерения массы, умноженные на квадрат единиц измерения скорости, и, как видно из уравнения 7.5, кинетическая энергия — тоже. Поэтому кинетическая энергия, как и работа, может быть измерена в джоулях или эргах. И действительно, все формы существования энергии могут быть измерены в этих единицах.
Теперь представим себе, что мы можем обосновать закон сохранения, в котором кинетическая энергия может быть преобразована в работу и наоборот, но в котором сумма кинетической энергии и работы в любой изолированной системе должна остаться постоянной. Но такой закон сохранения не выдержит, как будет показано ниже, никакой критики.
Объект, брошенный в воздух, по мере того как он покидает руку (или катапульту, или некое орудие), приобретает некоторую скорость и поэтому некоторую кинетическую энергию. Поскольку он поднимается вверх, его скорость уменьшается, из-за ускорения, наложенного на него полем тяготения Земли. Значит, и его кинетическая энергия постоянно уменьшается, и в конечном счете, когда объект достигает максимальной высоты и останавливается, его кинетическая энергия полностью исчезает — становится равной нулю. Можно бы было предположить, что кинетическая энергия исчезла из-за того, что в атмосфере была произведена работа и что поэтому кинетическая энергия была переведена в работу. Однако это — неадекватное объяснение события, поскольку то же самое происходило бы и в вакууме. Далее: можно было бы предположить, что кинетическая энергия исчезла полностью и без следа, то есть без появления работы, и что поэтому нет возможности применить какой-либо закон сохранения, включающий в себя работу и энергию. |