Адгезия — форма поверхностного натяжения (обозначим ее греческой буквой «сигма» — σ), действующая по окружности трубки, там, где вода соприкасается со стеклом. Эта окружность имеет длину 2πr, где r — радиус трубки. Тогда суммарная подъемная сила, вызванная адгезией, равна поверхностному натяжению поверхности раздела вода — стекло, σ дин/см, умноженному на длину окружности, по которой происходит соприкосновение воды и стекла, то есть 2prσ, или, иными словами, полная сила равна 2prσ дин.
Этой восходящей силе противодействует направленная вниз сила тяжести, которая равна весу (mg дин) поднятой воды. Масса водяного столба, поднятая адгезией, равна его объему (V), умноженному на плотность (d) воды. Подставляя Vd для m, мы получаем, что вес воды равен Vdg дин. Так как поднятый в трубке столбик воды имеет форму цилиндра, мы можем использовать геометрическую формулу для объема цилиндра и сказать, что объем поднятой воды равен высоте столбика воды (h), умноженной на площадь поперечного сечения трубки (πr<sup>2</sup>), где r — радиус водяного столба. Заменив πr<sup>2</sup>h на V, мы получаем, что вес воды равен πr<sup>2</sup>hdg дин.
Как только вода в узкой трубке поднимется на свою максимальную высоту и остановится, восходящая сила прилипания будет сбалансирована нисходящей силой тяготения, так что мы можем написать следующее равенство:
Решив данное уравнение для h, получаем:
Ускорение свободного падения (g) является фиксированной величиной для любой данной точки земной поверхности и для любой специфической жидкости, поверхностное натяжение (s) и плотность (d) являются данными для специфических условий эксперимента. Важной переменной величиной является радиус трубки (r). Как вы видите, высота, на которую столб воды поднимается в узкой трубке, обратно пропорциональна радиусу трубки. То есть чем уже трубка, тем на большую высоту поднимается жидкость. Следовательно, данный эффект наиболее ярко проявляет себя в трубках (естественных или искусственно созданных) микроскопической толщины. Такие трубки называются «капиллярными трубками» (от латинского выражения, означающего «похожие на волосы»), а повышение уровня водяного столба в таких трубках называется «капиллярным явлением». Именно благодаря капиллярному явлению вода поднимается по узким каналам куска сахара или впитывается промокательной бумагой и (в большой степени) благодаря капиллярному явлению жидкости поднимаются по стеблям и стволам растений.
Опять же, если мы знаем значение плотности данной жидкости и высоту подъема ее столба в трубке известного радиуса (и высоту и радиус мы легко можем измерить), то из этого следует, что поскольку значение g нам также известно, то мы всегда можем рассчитать из уравнения 9.5 значение величины поверхностного натяжения (σ).
В случае ртути, где силы прилипания к стеклу направлены вниз, уровень ее уходит ниже, чем «естественный уровень». Степень же понижения уровня увеличивается по мере уменьшения радиуса трубки.
Вязкость
Мы уже знакомы с понятием существования силы трения как силы, которая направлена против той, что вызывает движение твердого тела по другому твердому телу. Такое трение имеет тенденцию замедлять, а затем и совсем прекращать движение тела, если только действующая на него сила не будет постоянной.
В случае, когда твердое тело двигается сквозь жидкость, например, судно рассекает воду, тоже существует трение. Несмотря на то что вода кажется настолько гладкой и недостаточно прилипчивой, чтобы «ухватиться» за судно, судно, однажды приведенное в движение, быстро остановится, его энергия будет поглощена преодолением трения с водой, если только двигающая его сила не будет энергично поддерживаться. |