)
Однако если погруженное тело имеет меньшую плотность, чем плотность жидкости, в которую оно погружается, то есть D меньше, чем d, VD меньше, чем Vd, то погруженное тело имеет вес, который выражается отрицательным числом. С отрицательным весом тело в ответ на поле тяготения скорее перемещается вверх. (Таким образом, деревянная палочка или пузырек воздуха, погруженные в воду, будут «падать вверх», как только мы перестанем их удерживать под водой и позволим им свободно двигаться.)
Тело, обладающее меньшей плотностью, чем окружающая его жидкость, будет плавать, частично погруженное, на поверхности этой жидкости; в этом состоянии вес воды, которую это тело вытеснило, равен его собственному первоначальному весу; в таком случае его вес в воде равен нулю и оно не всплывает и не тонет. Твердое тело плавает, когда оно вытеснило такое количество воды (меньшее, чем его собственный объем), чтобы оно равнялось его собственному первоначальному весу.
Однако, несмотря на то что стальное судно плавает, это не означает, что плотность стали меньше, чем плотность воды. Ведь не сталь в одиночку вытесняет воду. Внутри судна находится воздушная полость, то есть по мере погружения в воду находящийся там воздух вытесняет воду так, как это делает стальной корпус. Суммарная плотность же сплава «сталь плюс вложенный воздух» является меньшей, чем плотность воды, хотя плотность стали в одиночку конечно же нет; вот поэтому стальные суда и плавают.
Сила плавучести, между прочим, это не только вопрос вычислений и теории; ее можно легко почувствовать. Поднимите тяжелый камень из воды, и вы почувствуете, как он внезапно увеличился в весе, едва попав на воздух. Опустите в воду большой кусок древесины и попробуйте его утопить; вы увидите, что дерево как бы «сопротивляется» вашим попыткам, — это сила плавучести выталкивает дерево из воды, и вы можете почувствовать ее «своими руками».
Когезия и адгезия
Твердые тела, как я уже сказал в начале главы, действуют как единое сплошное целое. Каждый фрагмент твердого объекта крепко сцепляется с любым другим его фрагментом; таким образом, если вы схватили один участок камня и поднимаете его, то поднимается целиком и весь камень. Это свойство фрагментов — сцепляться вместе — называется «когезией» (cohesion — от латинских слов, означающих «сцепляться»).
В жидкостях нет ничего подобного когезии твердых тел. Если вы опустите руку в воду, стараясь «зацепить» ее, надеясь на то, что вся жидкость поднимется из сосуда вслед за вашей рукой, вы только намочите пальцы — и все. Однако из этого нельзя заключить, что в жидкостях сила когезии полностью отсутствует. Эта сила в большинстве жидкостей намного меньше, чем в твердых телах, но она не равна нулю. Это наиболее четко можно увидеть, когда мы рассматриваем поверхность жидкости.
В теле жидкости, даже совсем рядом с ее поверхностью, данная часть жидкости связана силами сцепления с другими частями жидкости, которые окружают ее, одинаково во всех направлениях. В любом заданном направлении мы не можем обнаружить никакой суммарной неуравновешенной силы. На поверхности же жидкости, однако, силы сцепления направлены только внутрь, в тело жидкости, и не направлены наружу, где никакой жидкости, чтобы вызвать к жизни силы сцепления, нет. (Наиболее часто с другой стороны поверхности жидкости находится только воздух, а силы притяжения между воздухом и жидкостью настолько малы, что их можно игнорировать.) Результирующая этой полусферы сил сцепления, построенной относительно частицы жидкости на поверхности, направлена внутрь жидкости и расположена перпендикулярно этой поверхности.
Чтобы дать возможность поверхности жидкости противостоять этой внутренней силе, требуется выполнить работу, поэтому поверхность представляет собой форму потенциальной энергии. |