Предположим, кроме того, что отводы имеют различную ширину, так что поршень в большем отводе имеет площадь поперечного сечения, равную 10 см<sup>2</sup>, в то время как поршень в меньшем отводе имеет площадь поперечного сечения, равную всего лишь 1см<sup>2</sup>.
Теперь представьте себе, что к меньшему поршню приложена сила, равная одной дине. Так как площадь поверхности меньшего поршня равна 1 см<sup>2</sup>, то давление на него, полученное в результате приложения этой силы, равно 1 дин/см<sup>2</sup>. В соответствии с принципом Паскаля это давление передается через все тело жидкости неизменным и направлено перпендикулярно ко всем стенкам. В частности, данное давление перпендикулярно той части стенок, которая представляет собой больший поршень. И поскольку поршень меньшего размера перемещается вниз, то поршень большего размера будет перемещаться вверх.
Восходящее давление против большего поршня должно быть тем же самым, что и нисходящее давление против меньшего поршня, то есть 1 дин/см<sup>2</sup>. Однако площадь поверхности большего поршня равна 10 см<sup>2</sup>. Поэтому полная сила, которая действует на больший поршень, равна 1 дин/см<sup>2</sup>, умноженной на 10 см<sup>2</sup>, или 10 дин. Полная сила была умножена в десять раз, и соответственно вес, который могла поднять первоначальная сила, также будет увеличен в десять раз. Приспособление, которое называется «гидравлическим прессом», основано на этом эффекте, означающем, что тяжелые грузы могут быть подняты при помощи разумного количества силы.
Что же, мы опять получаем нечто из ничего? Нисколько! Предположим, что мы нажимаем на маленький поршень (площадью 1 см<sup>2</sup>) и заставляем его переместиться на расстояние в 1 см.
Объем жидкости, которую это заставило переместиться, равен 1 см<sup>2</sup>, умноженному на 1 см, то есть одному кубическому сантиметру (1 см<sup>3</sup>). Больший поршень (площадью 10 см<sup>2</sup>) может переместиться вверх лишь на расстояние, достаточное для того, чтобы вместить этот перемещенный 1 см<sup>3</sup> жидкости. Требуемое расстояние равно 1 см<sup>3</sup> поделить на 10 см<sup>2</sup> или 0,1 см. Таким образом, создалась такая же ситуация, как в случае рычага. Да, полученная сила стала десятикратно увеличенной, но расстояние, на котором действует эта сила, уменьшилось в десять раз. Полная работа (сила, умноженная на расстояние), полученная на выходе гидравлического пресса, остается такой же (если мы пренебрегаем такими вещами, как трение), как полная работа на его входе.
Давление жидкости передается не только стенкам сосуда, но также и (перпендикулярно) поверхностям любого твердого объекта, находящегося в пределах жидкости. Представьте себе железный куб, опущенный в жидкость таким образом, что верхняя поверхность и основание куба совершенно горизонтальны, а другие четыре поверхности — совершенно вертикальны. Давление на каждую из четырех вертикальных поверхностей зависит от высоты жидкости над ними, а она является одинаковой для всех. Таким образом, для вертикальных поверхностей мы имеем равные давления, направленные попарно и противоположно. Следовательно, в любом из направлений не существует никакого суммарного поперечного давления.
Но что, если мы рассмотрим две горизонтальные поверхности — верхнюю и основание? Ясно, что для нижней поверхности высота жидкости больше, а для верхней поверхности — меньше. Поэтому возникает сравнительно большое восходящее давление, приложенное к нижней поверхности, а ему противостоит сравнительно небольшое нисходящее давление, приложенное к верхней поверхности. В результате на тело, погруженное в жидкость, начинает действовать результирующая сила, направленная вверх. (Это наиболее легко проследить в случае твердого куба, но можно показать, что такое утверждение справедливо для твердого тела любой формы или, если это имеет значение, для погруженной капли жидкости или пузырька газа. |