Изменить размер шрифта - +
В математических терминах это означает, что мы найдем стратегию лучшего ответа каждого игрока в зависимости от (или как функцию от) стратегий, находящихся в распоряжении других игроков.

Вернемся к игре, в которую играли Строка и Столбец, и представим ее на рис. 4.7. Сначала проанализируем ответы Строки. Если Столбец применит стратегию «слева», наилучший ответ Строки — «внизу», обеспечивающий выигрыш 5. Мы показываем его, выделив соответствующий выигрыш кружком в таблице игры. Если Столбец предпочтет стратегию «посредине», лучший ответ Строки — «низко» (тоже выигрыш 5). А если Столбец выберет стратегию «справа», оптимальный выбор Строки — снова «низко» (выигрыш 12). Опять же, мы показываем лучшие варианты выбора Строки, обведя кружками соответствующие выигрыши. Аналогичным образом представлены лучшие ответы Столбца, выигрыши по которым выделены кружками: 3 (стратегия «посредине» как лучший ответ на стратегию Строки «вверху»), 5 («слева» как лучший ответ на «высоко»), 4 («посредине» как лучший ответ на «низко») и 7 («справа» как лучший ответ на «внизу»). Мы видим, что в одной ячейке — а именно «низко»/«посредине» — оба выигрыша выделены кружками. Следовательно, стратегии «низко» у Строки и «посредине» у Столбца одновременно будут лучшими ответами друг на друга. Мы нашли равновесие Нэша в этой игре еще раз.

 

Рис. 4.7. Анализ наилучших ответов

 

Анализ наилучших ответов — это исчерпывающий способ обнаружения в игре всех возможных равновесий Нэша. Вам следует углубить понимание этого метода, применив его ко всем играм, описанным в данной главе. Примеры с доминированием представляют особый интерес. Если у Строки есть доминирующая стратегия, именно она будет наилучшим ответом на все стратегии Столбца; следовательно, все наилучшие ответы Строки расположены по горизонтали в одной и той же строке. Точно так же, если у Столбца есть доминирующая стратегия, то все его наилучшие ответы выстроятся по вертикали в одном и том же столбце. Вы можете сами проверить, как такой анализ позволяет определить равновесия Нэша в дилемме заключенных с участием мужа и жены, показанной на , и в игре между Конгрессом и Федеральной резервной системой, отображенной на .

В некоторых играх анализ наилучших ответов не позволяет найти равновесие Нэша, подобно тому как разрешимость по доминированию не всегда обеспечивает требуемый результат. Однако в данном случае мы можем сказать кое-что более конкретное, чем при неудачной попытке использовать доминирование. Когда анализ наилучших ответов в игре с дискретными стратегиями не обнаруживает равновесия Нэша, это означает, что в этой игре нет равновесия в чистых стратегиях. Мы рассмотрим игры такого типа в  данной главы, а в  расширим область применения анализа наилучших ответов на игры, в которых стратегии представляют собой непрерывные переменные, например цены или расходы на рекламу. Кроме того, мы построим кривые наилучших ответов, что позволит нам находить равновесия Нэша, и увидим, что в подобных играх равновесие может отсутствовать с меньшей вероятностью в силу непрерывности выбора стратегий.

 

5. Три игрока

 

До сих пор мы анализировали только игры между двумя участниками. Однако все рассмотренные методы анализа применимы и для поиска равновесий Нэша в чистых стратегиях в любой игре с одновременными ходами с участием любого количества игроков. Когда в игре больше двух участников, каждому из которых доступно сравнительно небольшое количество чистых стратегий, анализ можно выполнить с помощью таблицы игры, подобно тому как мы это делали в первых четырех разделах данной главы.

Быстрый переход