Найдите все равновесия Нэша в чистых стратегиях для представленных ниже игр. Сначала проверьте таблицу игры на наличие доминирующих стратегий. Если таковых нет, решите игру посредством итеративного исключения доминируемых стратегий. Объясните логику своих рассуждений.
a)
b)
c)
d)
S2. Для каждой из четырех игр, представленных в упражнении S1, определите, это игра с нулевой или с ненулевой суммой. Объясните логику своих рассуждений.
a) Для каждой стратегии, соответствующей строке таблицы, запишите минимальный выигрыш Ровены (худшее, что может с ней сделать Колин в данном случае). Для каждой стратегии, отображенной в столбце таблицы, запишите минимальный выигрыш Колина (худшее, что может с ним сделать Ровена в данном случае).
b) Для каждого игрока определите стратегию (или стратегии), которая обеспечивает ему лучший из этих худших выигрышей. Это и есть стратегия минимакса каждого игрока.
(Поскольку в данном случае речь идет об игре с нулевой суммой, наилучшие ответы игроков действительно подразумевают сведение выигрышей друг друга к минимуму, а значит, эти стратегии минимакса и есть равновесиями Нэша. Джон фон Нейман доказал существование минимаксного равновесия в играх с нулевой суммой в 1928 году, за двадцать лет до того, как Нэш обобщил эту теорию.)
S4. Найдите все равновесия Нэша в чистых стратегиях в следующих играх с ненулевой суммой. Опишите шаги, которые вы при этом предприняли.
a)
b)
c)
d)
a) Есть ли доминирующая стратегия у Ровены либо у Колина? Объясните, почему есть или нет.
b) Используйте метод итеративного исключения доминируемых стратегий, чтобы как можно больше уменьшить игру. Опишите порядок выполнения такого исключения стратегий и представьте урезанную форму игры.
c) Разрешима ли эта игра по доминированию? Объясните, почему да или нет.
d) Найдите в ней равновесие (или равновесия) Нэша.
S6. «Если у игрока есть доминирующая стратегия в игре с одновременными ходами, значит, он наверняка получит самый лучший исход». Это утверждение истинно или ложно? Обоснуйте свой вывод и приведите пример игры, иллюстрирующий ваш ответ.
S8. В университете решают, что построить — новую лабораторию или новый театр в кампусе. Факультет естественных наук предпочел бы новую лабораторию, а гуманитарных ратует за театр. Однако финансирование проекта (вне зависимости от того, каким он будет) возможно только в случае единодушной поддержки всего преподавательского состава университета. При возникновении разногласий ни один проект не получит дальнейшего продвижения и оба факультета останутся без нового здания и с наихудшим выигрышем. Собрания двух отдельных групп преподавателей, на которых решается вопрос о поддержке проекта, проходят одновременно, а выигрыши представлены в следующей таблице:
a) Каковы равновесия Нэша в чистых стратегиях в этой игре?
b) Какая из игр, представленных в данной главе, больше всего напоминает эту игру? Объясните логику своих рассуждений.
S9. Предположим, два участника игрового шоу, Алекс и Боб, каждый по отдельности выбирают двери с номерами 1, 2, 3. Оба игрока получают призы, если их выбор совпадает, как показано в следующей таблице:
a) Каковы равновесия Нэша в этой игре? Какое из них (при его наличии) скорее всего приведет к (фокальному) исходу игры? Обоснуйте свой вывод.
b) Рассмотрите несколько измененную игру, в которой варианты выбора — снова просто числа, но две ячейки таблицы с выигрышами 15, 15 теперь содержат выигрыши 25, 25. Какой ожидаемый (средний) выигрыш каждого игрока, если каждый из них подбросит монету, чтобы решить, выбрать вариант 2 или 3? Лучше ли это фокусировки на том, чтобы оба выбрали 1 в качестве фокального равновесия? Как вам следует учитывать риск того, что Алекс может сделать одно, а Боб — другое?
S10. |