У Марты три сына: Артуро, Бернардо и Карлос. Она находит разбитую лампу посреди гостиной и понимает, что это сделал кто-то из сыновей. На самом деле виновник произошедшего Карлос, но Марта об этом не знает. Она заинтересована скорее в том, чтобы выяснить истину, а не наказать ребенка, поэтому предлагает сыновьям сыграть в следующую игру.
Каждый из них напишет на листе бумаги свое имя, а также слова: «Да, это я разбил лампу» либо «Нет, я не разбивал лампу». Если хотя бы один ребенок признается, что разбил лампу, Марта даст по 2 доллара (обычную сумму карманных денег) каждому, кто скажет, что разбил лампу, и 5 долларов тому, кто будет утверждать, что не делал этого. Если все три сына откажутся сознаваться, ни один из них не получит карманных денег (то есть каждый получит 0 долларов).
a) Составьте таблицу игры. Пусть Артуро соответствует строка таблицы, Бернардо — столбец, а Карлосу — страница.
b) Найдите все равновесия Нэша в этой игре.
c) В этой игре множество равновесий Нэша. Какое из них вы назвали бы фокальной точкой?
a) Нарисуйте таблицу игры «чет или нечет».
b) Покажите, что в этой игре нет равновесия Нэша в чистых стратегиях.
a) Сначала упростите ситуацию, заменив четырех парней двумя, и проанализируйте ее. (В баре две брюнетки и одна блондинка, но девушки просто реагируют на действия парней вышеописанным образом и не являются активными участницами игры.) Составьте таблицу выигрышей для этой игры и найдите все равновесия Нэша в чистых стратегиях, присутствующие в ней.
b) Теперь постройте трехмерную таблицу для случая, когда в игре участвуют три молодых человека (а также три брюнетки и одна блондинка, которые не являются активными игроками). Снова найдите в ней равновесия Нэша.
c) Не прибегая к таблице, назовите все равновесия Нэша для изначальной ситуации.
d) (дополнительное упражнение). Используйте результаты, полученные в пунктах а, b и c, чтобы обобщить анализ на ситуацию, когда в игре участвуют n молодых людей. Не пытайтесь строить n-мерную таблицу выигрышей, просто вычислите выигрыш одного игрока в случае, если k других игроков выберут блондинку и (n — k — 1) выберут брюнетку, при k = 0, 1… (n — 1). Может ли исход, указанный в фильме в качестве равновесия Нэша (когда все молодые люди подойдут к брюнеткам), быть действительно равновесием Нэша в данной игре?
Упражнения без решений
U1. Найдите все равновесия Нэша в чистых стратегиях для представленных ниже игр. Сначала проверьте таблицу игры на наличие доминирующих стратегий. Если таковых нет, решите игру посредством итеративного исключения доминируемых стратегий.
a)
b)
c)
b)
U2. Для каждой из четырех игр, представленных в упражнении U1, определите, это игра с нулевой или с ненулевой суммой. Объясните логику своих рассуждений.
U3. Как и в , используйте метод минимакса для поиска равновесий Нэша в играх с нулевой суммой, найденных в упражнении U2.
U4. Найдите все равновесия Нэша в чистых стратегиях в следующих играх. Опишите шаги, которые вы при этом предпринимали.
a)
b)
c)
b)
U5. Используйте метод последовательного исключения доминируемых стратегий для решения следующей игры. Опишите шаги, которые вы для этого предприняли. Покажите, что ваше решение представляет собой равновесие Нэша.
U6. Найдите все равновесия Нэша в чистых стратегиях для следующей игры. Опишите процесс, который вы при этом использовали. Объясните на примере данной игры, почему важно описывать равновесие с применением стратегий, выбранных игроками, а не только выигрышей, полученных в таком равновесии.
U7. |