Изменить размер шрифта - +

В такой форме можно представить многие простые иллюстративные примеры, в которых одно действительное число (такое как цена) выбирается для максимального увеличения другого, зависимого от него действительного числа (например, прибыль или выигрыш). В приложении к этой главе описан простой общий метод выполнения операции максимизации; вы найдете немало случаев его применения. Здесь же мы просто приводим формулу.

Функция, которую мы хотим максимизировать, задается следующим общим уравнением:

Y = A + BX–CX<sup>2</sup>.

Мы использовали обозначение Y для величины, которую нужно максимизировать, и X для величины, которую хотим выбрать, чтобы максимизировать Y. В нашем конкретном примере прибыль π<sub>x</sub> будет представлена в виде Y, а цена P<sub>х</sub> в виде X. Точно так же, хотя в любой конкретной задаче члены приведенного выше уравнения А, В и С были бы известны, мы обозначили их общими алгебраическими символами, с тем чтобы наша формула была применима ко множеству аналогичных задач. (Формальный термин, которым обозначаются члены А, В и С, — параметры, или алгебраические константы.) Поскольку большинство случаев практического применения подразумевают наличие неотрицательных значений X, таких как цены, а также максимизацию значения Y, необходимо, чтобы выполнялось условие В &gt; 0 и С &gt; 0. Тогда формула, позволяющая выбрать X для максимизации Y с учетом известных значений А, В и С, будет выглядеть так: Х = В/2С. Обратите внимание, что А в ней отсутствует, хотя это, безусловно, влияет на полученное в результате значение Y.

Сравнив общую функцию в уравнении выше и конкретный пример функции прибыли в игре в ценообразование на предыдущей странице, получим

В = 60 + P<sub>y</sub> и С = 2.

Следовательно, цена, которую выберет ресторан Xavier’s для максимального увеличения прибыли, будет удовлетворять формуле В/2С и составит

P<sub>х</sub> = 15 + 0,25 P<sub>y</sub>.

Это уравнение определяет значение P<sub>х</sub>, при котором прибыль ресторана Xavier’s будет максимальной при соответствующем значении цены ресторана Yvonne’s P<sub>y</sub>. Иными словами, это и есть то, что нам нужно: правило наилучшего ответа ресторана Xavier’s.

Правило наилучшего ответа ресторана Yvonne’s можно найти аналогичным способом. Поскольку затраты на обслуживание клиентов и объемы продаж двух ресторанов полностью симметричны, очевидно, что это уравнение будет иметь такой вид:

P<sub>у</sub> = 15 + 0,25 P<sub>х</sub>.

Оба правила используются одним и тем же способом для построения графиков наилучших ответов. Например, если Xavier’s назначит цену 16, то Yvonne’s введет это значение в свое правило наилучшего ответа, чтобы найти P<sub>у</sub> = 15 + 0,25 (16) = 19; точно так же наилучший ответ ресторана Xavier’s на значение цены ресторана Yvonne’s P<sub>у</sub> = 16 составляет P<sub>х</sub> = 19, наилучший ответ каждого ресторана на цену другого 4 равен 16, на цену 8 — 17 и т. д.

На рис. 5.1 приведены графики этих двух правил наилучшего ответа. В силу особенностей нашего примера (линейная зависимость между объемом продаж и назначенными ценами, а также постоянные издержки на приготовление каждого блюда) оба графика наилучших ответов представляют собой прямые линии. При других характеристиках спроса и затрат они могут не быть прямыми линиями, но метод их построения тот же, а именно: сначала зафиксировать цену одного ресторана (скажем, P<sub>у</sub>), а затем найти значение цены другого ресторана (например, P<sub>х</sub>), которая максимизирует прибыль второго ресторана, и наоборот.

Быстрый переход