Тем не менее принципиально этот процесс в обоих случаях имеет одну и ту же физическую основу. Измерить ионизационные потенциалы в биологических молекулах очень сложно из-за малости минимальных значений энергии электронов в этом случае. Поэтому лучше их характеризовать не абсолютными величинами (электрон-вольтами), а относительными. Можно принять за единицу измерения ионизационного потенциала в молекулах живых систем ионизационный потенциал молекулы воды. Это тем более оправдано, что вода с энергетической точки зрения является главной в живом организме. Это основа жизни биологической системы. Важно понять, что здесь речь идет не о любой воде, а о воде, которая содержится в биологических системах. Приняв ионизационный потенциал воды в живом веществе за единицу, можно определить в этих единицах ионизационные потенциалы всех других биологических соединений. Тут еще одна тонкость. У атома водорода имеется всего один орбитальный электрон. Поэтому его ионизационный потенциал равен одной величине энергии. Если атом и молекула более сложные, то их орбитальные электроны находятся в смысле возможности их отрыва в неравных условиях. Наиболее легко оторвать от ядра те электроны, которые имеют наименьшие энергии связи с ядром, то есть которые находятся на самых внешних электронных оболочках. Поэтому, говоря об ионизационных потенциалах сложных биологических систем, имеют в виду те электроны, которые оторвать наиболее легко, у которых энергия связи минимальна.
В биологических системах в результате определенного распределения электрических зарядов (их поляризации) имеются электрические поля, поскольку между электрическими зарядами действуют электрические силы (силы Кулона) отталкивания и притяжения в зависимости от того, являются ли эти заряды одноименными или разноименными соответственно. Энергетической характеристикой электрического поля является разность потенциалов между разными точками этого поля. Разность потенциалов определяется электрическим полем, которое, в свою очередь, определяется распределением заряженных частиц. Распределение заряженных частиц определяется взаимодействием между ними. Разность потенциалов в биологических системах (биопотенциалов) может составлять единицы милливольт. Величина биопотенциалов является однозначным показателем состояния биосистемы или ее частей. Она меняется в том случае, если организм находится в патологическом состоянии. В этом случае меняются реакции живого организма на факторы внешней среды. Возникают реакции, которые наносят вред организму, его функционированию и структуре.
Электрофизическими свойствами биологических соединений определяется и быстрота реакции живого организма как единого целого, так и его отдельных анализаторов на действие внешних факторов. От этих свойств зависит и быстрота обработки информации в организме. Ее оценивают по величине электрической активности. Без движения зарядоносителей все эти функции организма были бы невозможны. Таким образом, биоэнергетические явления на уровне элементарных частиц являются основой главных функций живого организма, без этих функций жизнь невозможна. Энергетические процессы в клетках (преобразование энергии и сложнейшие биохимические обменные процессы) возможны только благодаря тому, что в этих процессах участвуют легкие заряженные частицы — электроны.
Биопотенциалы тесно связаны с электрической активностью данного органа. Так, электрическая активность мозга характеризуется спектральной плотностью биопотенциалов и импульсами напряжения различной частоты. Установлено, что для человека характерны следующие биоритмы мозга (в герцах): дельта-ритм (0,5—3); тета-ритм (4—7), альфа-ритм (8—13), бета-ритм (14—35) и гамма-ритм (36—55). Имеются, хотя и нерегулярно, и некоторые ритмы с большей частотой. Амплитуда электрических импульсов мозга человека достигает значительной величины —до 500 мкВ. |