Энергия связи у них так же, как и у белков, мала, а удельная проводимость велика, хотя и на несколько порядков меньше, чем у белков. Подвижность электроносителей, от которой зависит проводимость, у аминокислот меньше, чем у белков. Но электрофизические свойства аминокислот в целом принципиально такие же, как и свойства белков.
Но аминокислоты в составе живого организма обладают и свойствами, которыми белки не обладают. Это очень важные свойства. Благодаря им механические воздействия в них превращаются в электричество. Это свойство вещества в физике называется пьезоэлектрическим. В нуклеиновых кислотах живого организма тепловое воздействие также приводит к образованию электричества (термоэлектричество). То и другое свойство аминокислот определяется наличием в них воды. Ясно, что указанные свойства меняются в зависимости от количества воды. Использование этих свойств в организации и функционировании живого организма очевидно. Так, на зависимости проводимости от освещенности (фотопроводимость) основано действие палочек зрительной сетчатки. Но молекулы живых организмов обладают и электронной проводимостью, как и металлы.
Электрофизические свойства белковых систем и нуклеиновых молекул проявляются только в динамике, только в живом организме. С наступлением смерти электрофизическая активность очень быстро пропадает. Это происходит потому, что прекратилось движение зарядоносителей (ионов и электронов и др.). Можно не сомневаться, что именно в электрофизических свойствах живого вещества заложена возможность быть живым. Об этом Сент-Дьерди писал так: "Я глубоко убежден, что мы никогда не сможем понять сущность жизни, если ограничимся молекулярным уровнем. Ведь атом — это система электронов, стабилизируется ядром, а молекулы не что иное, как атомы, удерживаемые вместе валентными электронами, то есть электронными связями".
Из сопоставления электрофизических свойств белковых систем и аминокислот с полупроводниками может создаться впечатление о том, что электрофизические свойства тех и других одинаковы. Это не совсем так. Хотя в белковых системах живого организма имеется и электронная, и дырочная, и ионная проводимость, но они связаны между собой более сложно, чем в неорганических и органических полупроводниках. Там эти проводимости просто складываются и получается суммарная, итоговая проводимость. В живых системах такое арифметическое сложение проводимостей недопустимо. Здесь надо пользоваться не арифметикой (где 1 +1 =2), а алгеброй комплексных чисел. При этом 1 + 1 не равно 2. Ничего странного в этом нет. Это говорит о том, что эти проводимости не являются независимыми друг от друга. Взаимные их изменения сопровождаются процессами, которые меняют общую проводимость по более сложному закону (но не произвольно!). Поэтому, говоря об электронной (или другой) проводимости белковых систем, добавляют слово "специфическая". То есть имеется электронная (и другие) проводимость, которая свойственна только живому. Процессы, определяющие электрофизические свойства живого, очень сложны. Одновременно с движением электрических зарядов (электронов, ионов, дырок), которое определяет собой электропроводимость, действуют друг на друга и электромагнитные поля. Элементарные частицы обладают магнитными моментами, т.е. являются магнитиками. Поскольку эти магнитики взаимодействуют друг с другом (а они обязаны это делать), то в результате этого воздействия устанавливается определенная ориентация этих частиц. Непрерывно молекулы и атомы меняют свое состояние — они осуществляют непрерывные и скачкообразные (дискретные) переходы из одного электрического состояния в другое. Получая дополнительную энергию, они возбуждаются. Когда они от нее освобождаются, то переходят в основное энергетическое состояние. Эти переходы оказывают влияние на подвижность зарядоносителей в живом организме. |