Изменить размер шрифта - +

После этого изучение митогенетических лучей значительно расширилось, поскольку появилась возможность их регистрации. Такие исследования интенсивно проводились в Японии, Амери­ке и России. У нас в стране ими занималась дочь Гурвича А.А.Гурвич, С.Конев, Г.Попов, Т.Мамедов и В.Веселовский. Именно наши ученые установили, что это излучение регистри­руется во всех исследованиях животных и растений. При этом у различных биологических видов оно проявляется с изменяющей­ся силой (интенсивностью) и имеет разное распределение интен­сивности по частотам (длинам волн). Специалисты такое распре­деление называют спектром. Они показали экспериментально, что в тех случаях, когда исследуемая биологическая система (жи­вотное, растение, организм человека) начинает отмирать, то митогенетическое излучение резко увеличивается. Добавим, что к этому времени митогенетическое излучение А.Г.Гурвича стали называть "биофотонами", то есть светом, порождаемым биосис­темами. Опыты показали, что с наступлением смерти биосисте­мы это излучение (биофотоны) исчезает.

В настоящее время специалисты рассматривают несколько возможных механизмов образования биофотонов. Они обраща­ют внимание на то, что после подачи кислорода у живых орга­низмов значительно возрастает поток фотонов. Объясняется это процессами окисления во время выработки энергии из глюкозы и кислорода. При этом вырабатываются энергонасыщенные веще­ства в виде алденозинтрифосфата. Установлено, что на 10<sup>11</sup> пере­работанных молекул кислорода высвобождается всего один био­фотон (на сто миллиардов молекул один фотон).

Биофотоны излучаются и в других процессах. Так, они из­лучаются в процессе реакции липидов с фосфатами, кислородом и ионами железа, в результате которых образуются перекиси липидов с молекулярным кислородом. Биофотоны излучаются и во время фагоцитоза. При этом полиморфонуклеаза и другие фаго­циты излучают биофотоны. То же самое происходит при их хими­ческом возбуждении. Источниками биофотонов могут служить и составные части протеинов, ядра клеток тела, а также носители наследственной информации, то есть ДНК.

Какова роль биофотонного излучения? Физик Фриц Понн и биолог Вальтер Нагль полагают, что фотонное излучение регу­лирует периодичность обмена веществ клеток и создает нервные импульсы. Более того, это излучение, передавая нервные импуль­сы во всем организме, обеспечивает необходимые для существо­вания организма ритмы, гарантирует синхронность жизненно важных для организма процессов. То, что биофотоны имеют ма­лую интенсивность, не должно удивлять. Эффективность от их воздействия на биомолекулы в 10<sup>40</sup> раз выше такой же эффектив­ности обычных фотонов, которые не рождены клетками организ­ма. Поэтому не надо удивляться, что они прекрасно справляют­ся с ролью регуляторов химических, в том числе и ферментатив­ных реакций обменного разложения.

Любопытны результаты исследований, которые провел С.Мюге. В качестве вещества, которое должно было усиливать свой рост под действием митогенетических лучей, С.Мюге ис­пользовал дрожжи определенного штамма, которые были подо­браны Гурвичем. Они особенно хорошо реагировали на дейст­вие митогенетических лучей.

Свои опыты С.Мюге проводил следующим образом. Квад­ратные кюветы заполнялись агаром с дрожжевыми клетками. Сверху на них располагали проростки двух сортов лука. Идея опытов состояла в том, чтобы наблюдать за ростом дрожжей под действием излучения, исходящего от проростков лука. Надо ска­зать, что слова "излучение", "лучи" здесь не очень удачны. Ско­рее надо бы говорить о поле, которое занимает определенный объем. Это поле (митогенетическое излучение) занимало опреде­ленное пространство, где находился каждый из проростков лука. Дрожжи должны были наглядно вырисовывать, оконтурить это пространство. Ведь если дрожжи попадали в это пространство, то начинали очень быстро расти (пока это пространство не было ими заполнено полностью).

Быстрый переход