Оно занимает особое место где-то в плотном ряду всех возможных рациональных чисел. Но как мы определим его положение?
Дедекинд понимал, что √2 четко разделяет последовательность рациональных чисел на две части: те, что меньше его, и те, что больше. Отчасти это разделение – или сечение – определяет √2 в рамках рациональных чисел. Единственная загвоздка в том, что мы прибегаем к √2 с целью определить две части разреза. Но есть способ это преодолеть. Рациональные числа больше √2 определенно положительные, и их квадрат больше 2. Рациональные числе меньше √2 – все остальные. Эти два множества рациональных чисел теперь определены без явного использования √2, но точно указывают его положение на прямой действительных чисел.
Дедекинд показал: если предположить, что действительные числа существуют, то сечение, удовлетворяющее этим двум частям, может быть связано с любым действительным числом в последовательности R из всех рациональных чисел, больших этого числа, и последовательности L из всех рациональных чисел, меньше этого числа или равных ему. (Последнее условие необходимо для связи сечения с любым рациональным числом. Мы ведь не хотим от них отказываться.) Здесь L и R могут восприниматься как левая и правая части на привычном изображении прямой действительных чисел.
Два множества, L и R, подчиняются нескольким довольно строгим условиям. Во-первых, каждое рациональное число принадлежит только одному из них. Во-вторых, каждое число во множестве R больше, чем любое число во множестве L. Наконец, существует техническое ограничение, связанное с рациональными числами как таковыми: L может иметь или не иметь самое большое число, а R никогда не имеет самого малого. Назовем любую пару подмножеств рациональных чисел с такими свойствами сечением.
В обратном конструировании не нужно предполагать существование действительных чисел. Вместо этого мы можем использовать сечения для определения действительных чисел, так что фактически такое число является сечением. Обычно мы не рассматриваем действительные числа именно так, но Дедекинд понял, что при желании это возможно. Главная задача – определить, как складывать и умножать сечения, чтобы действовала арифметика действительных чисел. Оказалось, это просто. Чтобы сложить два сечения (L<sub>1</sub>, R<sub>1</sub>) и (L<sub>2</sub>, R<sub>2</sub>), положим, что L<sub>1</sub> + L<sub>2</sub> будет множеством всех чисел, получаемым добавлением чисел из L<sub>1</sub> к числам из L<sub>2</sub>, и так же определим R<sub>1</sub> + R<sub>2</sub>. Тогда суммой двух сечений будет сечение (L<sub>1</sub> + L<sub>2</sub>, R<sub>1</sub> + R<sub>2</sub>). Умножение выполняется так же, хотя здесь есть небольшое различие между положительными и отрицательными числами.
Наконец, нам надо убедиться, что арифметика сечений обладает всеми свойствами, ожидаемыми от действительных чисел. К ним относятся стандартные законы алгебры, которые аналогичны свойствам рациональных чисел. Главное свойство, отличающее действительные числа от рациональных, заключается в том, что предел бесконечной последовательности сечений существует (при применении определенной техники). Также существует сечение, соответствующее любому бесконечному расширению десятичных дробей. Это тоже несложно.
Исходя из того, что всё перечисленное возможно, посмотрим, как Дедекинд смог доказать, что √2√3 = √6. Мы уже видели, что √2 соотносится с сечением (L<sub>1</sub>, R<sub>1</sub>), где R<sub>1</sub> состоит из всех положительных рациональных чисел с квадратами больше 2. А √3 соотносится с сечением (L<sub>2</sub>, R<sub>2</sub>), где R<sub>2</sub> состоит из всех положительных рациональных чисел с квадратами больше 3. |