Изменить размер шрифта - +
, когда Майкл Фридман получил доказательство четырехмерной гипотезы Пуанкаре, для которого не требовался трюк Уитни. Доказательство было чрезвычайно сложным, но работало. Итак, после 50 лет топтания на месте и 20 лет лихорадочной активности топологи расправились наконец с гипотезой Пуанкаре для всех размерностей, кроме той, о которой, собственно, и шла речь изначально. Успехи впечатляли, но методы, при помощи которых они были достигнуты, не позволяли сказать почти ничего о трехмерном случае. Требовался новый подход.

Перечень того, что позволило, наконец, сдвинуться с мертвой точки, отчасти напоминает традиционный список подарков к свадьбе: что-то старинное, антикварное, что-то новенькое, что-то взятое взаймы и, наконец, если немного выходить за рамки, что-то из даров небес. Старинная идея заключалась в обращении к той области топологии, которая на фоне активной работы с пространствами более высоких размерностей представлялась почти исчерпанной: в топологию поверхностей. Новая идея была в том, чтобы заново рассмотреть классификацию поверхностей с позиции, на первый взгляд, совершенно чуждой: с позиции классической геометрии. Одолженной идеей можно считать поток Риччи, источником вдохновения для которого послужил математический аппарат общей теории относительности Эйнштейна. Ну а к дарам небес можно отнести нечто вроде попадания «пальцем в небо»: далеко идущие предположения, опирающиеся отчасти на интуицию, но куда больше — на надежду.

Вспомним, что ориентируемые поверхности без границы можно проклассифицировать: каждая из них топологически эквивалентна тору с некоторым числом отверстий. Это число — род поверхности, и когда род равен нулю, поверхность представляет собой сферу без ручек, т. е. просто сферу. Это слово сразу же напоминает нам о том, что среди всех топологических сфер одна поверхность стоит особняком и является архетипом. Конкретно речь идет о единичной сфере в евклидовом пространстве. Забудьте на мгновение все разговоры о резиновом листе — пока отложим это в сторону. Сосредоточьтесь на старой доброй евклидовой сфере. У нее много разных дополнительных математических свойств, проистекающих из жесткости и однозначности евклидовой геометрии. Важнейшее из этих свойств — кривизна. Кривизну можно квантифицировать: для каждой точки геометрической поверхности существует число, говорящее о том, насколько изогнута поверхность вблизи этой точки. Сфера — единственная в евклидовом пространстве замкнутая поверхность, кривизна которой во всех точках одинакова и положительна.

Это странно, потому что постоянная кривизна — не топологическое свойство. Еще загадочнее то, что сфера не одинока. Существует еще одна стандартная геометрическая поверхность, которая стоит особняком и представляет собой архетипический тор. А именно: начнем с квадрата на плоскости и отождествим противоположные его стороны (см. рис. 12 из главы 4). Результат в трехмерном пространстве после скатывания рулона и соединения тождественных сторон выглядит изогнутым. Однако, по существу, мы можем работать непосредственно с квадратом, применив дополнительно правила склеивания. Квадрат имеет естественную геометрическую структуру: это участок на евклидовой плоскости. Плоскость, кстати говоря, тоже имеет постоянную кривизну, на этот раз нулевую. Тор с данной конкретной геометрией тоже имеет нулевую кривизну и называется плоским тором. Возможно, название звучит как оксюморон, но для муравья, живущего на плоском торе и пользующегося линейкой и транспортиром для измерения расстояний и углов, местная геометрия вполне соответствовала бы плоской геометрии.

Геометры XVIII в., стараясь разобраться в аксиоме Евклида о существовании параллельных линий, пытались вывести ее из остальных евклидовых постулатов, но раз за разом терпели поражение. В конце концов пришло понимание, что такой вывод невозможен. Существует три различных типа геометрии, в каждом из которых выполняются все условия и требования Евклида, за исключением аксиомы о параллельных прямых.

Быстрый переход