Изменить размер шрифта - +
Поэтому оно имеет форму. Чтобы выяснить об этой форме что-нибудь полезное, мы рассматриваем многообразие как топологи и вычисляем его гомологическую и когомологическую группы. Но естественными ингредиентами алгебраической геометрии являются не геометрические объекты вроде триангуляционных сеток и циклов, а вещи, которые проще всего описываются алгебраическими уравнениями. Вернитесь немного назад и взгляните еще раз на уравнение поверхности Куммера. Как это соотносится с триангуляцией? В формуле нет ничего, что указывало бы на треугольники.

Может быть, нам нужно начать сначала. Вместо треугольников нам следовало бы использовать естественный строительный материал для многообразий — подмногообразия, определенные дополнительными ограничивающими уравнениями. Теперь нам придется переопределять циклы: вместо набора треугольников с целыми ярлыками мы воспользуемся набором подмногообразий с такими ярлыками, которые лучше всего подойдут в данном случае. По различным причинам — по большей части потому, что, если использовать целые ярлыки, гипотеза Ходжа неверна, — разумным выбором будут рациональные числа. Вопрос Ходжа сводится к следующему: содержит ли новое определение гомологии и когомологии всю ту же информацию, что и топологическое определение? Если гипотеза верна, то алгебраический цикл — не менее острый инструмент топологии, чем когомологический резец. Если она неверна, то алгебраический цикл — всего лишь твердый тупой предмет.

Вот только… прошу прощения, я немного переборщил. Гипотеза утверждает, что достаточно воспользоваться определенным типом алгебраического цикла — того, что обитает в классе Ходжа. Чтобы объяснить это, нам потребуется еще один ингредиент в уже и без того густой смеси: анализ. Одной из важнейших концепций анализа является дифференциальное уравнение, которое представляет собой условие, наложенное на скорости изменения переменных (см. главу 8). Почти вся математическая физика XVIII, XIX и XX вв. моделирует реальность при помощи дифференциальных уравнений. По существу, это верно даже для XXI в. В 1930-е гг. эта идея привела Ходжа к целой группе новых методик. Сегодня все это называется теорией Ходжа. Она естественным образом связана с множеством других мощных методов в объединенной области анализа и топологии.

Идея Ходжа заключалась в том, чтобы использовать дифференциальное уравнение для распределения классов когомологий по типам. Каждый из них обладает дополнительной структурой, которую можно успешно применять при решении топологических задач. Определяются они при помощи дифференциального уравнения, появившегося впервые в конце XVIII в. в работе Пьера-Симона де Лапласа и известного, соответственно, как уравнение Лапласа. Основные работы Лапласа были посвящены небесной механике, движению и форме планет и их спутников, комет и звезд. В 1783 г. он работал над определением точной формы Земли. К тому времени уже было известно, что Земля — не сфера, что она сплющена у полюсов и представляет собой приплюснутый сфероид — как если сесть сверху на пляжный мяч. Но даже такое описание не отражает деталей. Лаплас нашел способ рассчитать форму Земли с любой заданной точностью на основании физической величины, представляющей гравитационное поле планеты: это не само поле, но его гравитационный потенциал. Это мера энергии, содержащейся в гравитационном поле, численная величина, определяемая в каждой точке пространства. Тяготение действует в том направлении, в котором потенциал уменьшается с максимальной скоростью, а абсолютное значение силы соответствует скорости уменьшения.

Гравитационный потенциал удовлетворяет уравнению Лапласа: грубо говоря, это означает, что в отсутствии вещества, т. е. в вакууме, среднее значение потенциала по очень маленькой сфере равно его значению в центре сферы. Это своего рода демократия: ваша ценность получается путем усреднения ценностей ваших соседей.

Быстрый переход