Изменить размер шрифта - +
Это своего рода демократия: ваша ценность получается путем усреднения ценностей ваших соседей. Любое решение уравнения Лапласа называется гармонической функцией. Ходжа среди классов когомологий интересуют те, что имеют особые отношения с гармоническими функциями. Теория Ходжа и изучение этих типов помогли открыть глубокую и чудесную область математики: отношения между топологией пространства и специальным дифференциальным уравнением на этом пространстве.

Вот мы и у цели. Гипотеза Ходжа постулирует глубокую и мощную связь между тремя столпами современной математики: алгеброй, топологией и анализом. Возьмем любое многообразие. Чтобы разобраться в его форме (это топология с выходом на когомологические классы), выбираем частные случаи таких классов (анализ с выходом на классы Ходжа через дифференциальные уравнения). Эти частные случаи коголомологических классов могут быть реализованы с использованием подмногообразий (алгебра: добавьте несколько уравнений и внимательно посмотрите на алгебраические циклы). Иными словами, чтобы ответить на топологический вопрос («Какой формы эта штука?») для многообразия, следует перевести его в плоскость анализа, а затем решить средствами алгебры.

Почему это так важно? Гипотеза Ходжа — это предложение добавить в инструментарий специалиста по алгебраической геометрии два новых инструмента: топологические инварианты и уравнение Лапласа. В самом деле, если разобраться, то в этой гипотезе речь не идет о какой-то математической теореме: речь о новых инструментах. Если гипотеза верна, эти инструменты обретают новое значение и становятся потенциальным средством поиска ответов на бесчисленное количество вопросов. Разумеется, гипотеза может оказаться и ошибочной. Было бы обидно, но, если возможности наших инструментов ограничены, лучше знать об этом заранее, чем то и дело натыкаться на проблемы в самый неподходящий момент.

 

Теперь, когда мы оценили природу гипотезы Ходжа, можно посмотреть, какие у нас есть свидетельства в ее пользу. Что нам известно? Чрезвычайно мало.

В 1924 г., еще до того, как Ходж выдвинул свою гипотезу, Соломон Левшец доказал теорему, которая сводится к гипотезе Ходжа для второй (или двумерной) группы когомологий любого многообразия. При помощи рутинных методов алгебраической топологии можно показать, что из этого следует гипотеза Ходжа для размерностей 1, 2 и 3. Для многообразий более высоких размерностей известно лишь несколько частных случаев гипотезы Ходжа.

Первоначально Ходж сформулировал свою гипотезу в терминах целых маркеров (или индексов). В 1961 г. Майкл Атья и Фридрих Хирцебрух доказали, что для высших измерений эта версия гипотезы неверна. Поэтому сегодня мы формулируем гипотезу Ходжа с использованием рациональных коэффициентов: для этой версии у нас есть некоторое количество обнадеживающих данных. Самое сильное свидетельство в ее пользу состоит в том, что одно из наиболее глубоких ее следствий — еще более технически сложная теорема, известная как теорема об «алгебраичности локусов Ходжа», уже доказана без опоры на гипотезу Ходжа. Эдуардо Каттани, Пьер Делинь и Арольдо Каплан нашли соответствующее доказательство в 1995 г.

Наконец, в теории чисел имеется симпатичная гипотеза, аналогичная гипотезе Ходжа и получившая название гипотезы Тейта в честь Джона Тейта. Она связывает алгебраическую геометрию с теорией Галуа — совокупностью идей, доказывающих, что у полиномиальных уравнений пятой степени не существует явных решений, выражаемых формулой. Формулировка гипотезы Тейта достаточно сложна: в ней фигурирует еще один вариант когомологии. Есть причины надеяться, что гипотеза Тейта верна, хотя она не доказана. Но по крайней мере можно сказать, что у гипотезы Ходжа есть разумный родич, хотя как подступиться хоть к той, хоть к другой гипотезе, пока совершенно неясно.

Гипотеза Ходжа — одно из тех математических утверждений, которые почти нечем ни подтвердить, ни опровергнуть и у которых свидетельства и в ту и другую сторону не слишком убедительны.

Быстрый переход