Изменить размер шрифта - +
В любом случае большая часть соответствующих технологий уже существует.

Потенциально уже эти достижения могут в значительной мере изменить обстановку. Однако нужно еще разобраться, что все эти данные означают. Вообще-то, биология — наука не о данных, а о процессах. Эволюция — это процесс, как и деление клетки, развитие зародыша, зарождение раковой опухоли, поведение толпы, работа мозга и динамика глобальной экосистемы. Лучший известный на сегодня способ понять фундаментальные свойства процесса и разобраться в том, что в нем происходит, как и почему, — это математика. Так что скоро появятся великие задачи новых типов — как разворачивается динамика процесса в присутствии сложной, но очень конкретной организующей информации (ДНК-последовательностей); как генетические изменения взаимодействуют со средой, сдерживая эволюцию; как правила роста, деления, движения, адгезии и гибели клетки формируют развивающийся организм; как поток электронов и химических веществ в сети нервных клеток определяет восприятие и действия организма.

Вычислительные средства — еще один источник новой математики, успевший уже проявить себя. Обычно они воспринимаются как инструмент математических действий, но не стоит забывать, что математика в равной степени является инструментом понимания и организации вычислений. Этот двусторонний обмен приобретает все большее значение для благополучия и развития обеих областей — не исключено, что когда-нибудь в будущем они просто сольются воедино. Некоторые математики считают, что их с самого начала не следовало разделять. Из множества существующих уже сегодня в этой области тенденций на ум приходит вопрос о работе с очень большими массивами данных. Этот вопрос имеет отношение не только к ДНК, о чем уже упоминалось, но и к задаче предсказания землетрясений, к расчету эволюционных процессов, к проблемам глобального климата, фондового рынка, международных финансов и новых технологий. Наша задача — научиться использовать большие массивы данных для проверки и отладки математических моделей реального мира, которые в дальнейшем дадут нам в руки подлинный контроль над сложнейшими системами.

В отношении того, в чем лично я разбираюсь лучше всего, предсказания в основном негативные, но в то же время это подтверждает, что креативность математического сообщества по-прежнему не снижается. Все математики-исследователи время от времени чувствуют, что их предмет как будто обладает собственным сознанием. Задачи решаются так, как это нужно математике, а не математикам. Мы выбираем, какие вопросы рассматривать, но мы не можем выбирать, какие у этих вопросов должны быть ответы. Вообще, такое ощущение характерно для двух крупных школ, которые отличает разное отношение к природе математики. Последователи Платона считают, что «идеальные формы» математики ведут своего рода независимое существование «где-то там», в некоем собственном царстве, отличном от материального мира. (Существуют более тонкие формулировки, которые, вероятно, звучат более здраво, но суть именно в этом.) Вторые видят в математике общечеловеческую концепцию. Но, в отличие от большинства подобных концепций — законодательной системы, денег, этики, морали, математика представляет собой конструкцию с прочной логической основой. Существуют серьезные ограничения на то, какие утверждения вы можете или не можете предлагать остальным. Именно из-за этих ограничений возникает впечатление, что математика сама решает, что ей делать и как развиваться; они же создают у математиков ощущение, что их наука существует сама по себе вне зоны человеческой деятельности. Мне представляется, что платонизм — это описание не того, что есть математика на самом деле, а того, как ощущает математику человек, в ней работающий. Примерно так человек, увидевший розу, кровь или светофор, живо ощущает «красное». Философы называют подобные ощущения «первичными», некоторые из них даже считают, что наше ощущение свободы воли на самом деле представляет собой первичное ощущение того, как мозг принимает решения.

Быстрый переход