Изменить размер шрифта - +

Неизвестно, существует ли совершенный кубоид, т. е. существует ли такой параллелепипед Эйлера, главная диагональ которого тоже имеет целую длину. (Главная диагональ — это отрезок, соединяющий противоположные вершины прямоугольного параллелепипеда и проходящий сквозь его внутреннюю часть. Таких отрезка четыре, но все они равны по длине.) Известно, что формулы Эйлера не дают примера такого параллелепипеда. Он, если существует, должен удовлетворять нескольким условиям — к примеру, по крайней мере одно его ребро должно быть кратно 5, другое — 7, третье — 11, четвертое — 19. Компьютерные эксперименты показали, что длина одного из ребер должна быть не менее одного триллиона.

Есть достаточно близкие варианты. У прямоугольного параллелепипеда со сторонами 672, 153 и 104 главная диагональ целая, как и две из трех диагоналей граней. В 2004 г. Хорхе Сойер и Клиффорд Рейтер доказали, что существуют совершенные непрямоугольные параллелепипеды. Грани таких параллелепипедов представляют собой не прямоугольники, а параллелограммы, а сам параллелепипед как бы скошен на сторону. Ребра совершенного непрямоугольного параллелепипеда имеют длины 271, 106 и 103; малые диагонали граней равны 101, 266 и 255; большие диагонали граней — 183, 312 и 323; внутренние диагонали (а у такого параллелепипеда они все разные) имеют длины 374, 300, 278 и 272.

 

Гипотеза об одиночестве бегуна

 

Эта задача из трудной для понимания области математики, известной как теория диофантовых приближений. Сформулировал ее в 1967 г. Йорг Виллс. А название — гипотеза одинокого бегуна — придумал в 1998 г. Луис Годдин. Положим, что n бегунов бегают по кольцевой дорожке единичной длины с постоянной скоростью, причем скорости всех бегунов различны. Можно ли утверждать, что каждый из бегунов в какой-то момент времени окажется одиноким, т. е. будет находиться на расстоянии более 1/n от остальных? Разумеется, для разных бегунов это будут разные моменты времени. Гипотеза состоит в том, что ответ всегда «да»; на данный момент она доказана для n = 4, 5, 6 и 7.

 

Гипотеза Конвея о трекле

 

Трекл — это сеть, размещенная на плоскости таким образом, что каждые два ее ребра имеют ровно одну общую точку (см. рис. 48). Встречаться они могут либо в вершине, либо в точке пересечения, но не то и другое одновременно. Если они пересекаются, то обязательно поперек; это значит, что ни одно из них не может целиком остаться по одну сторону от другого (а это могло бы произойти, если бы они, скажем, соприкасались). Джон Конвей в неопубликованной работе высказал гипотезу о том, что в любой сети такого рода число линий меньше или равно числу точек. В 2011 г. Радослав Фулек и Янош Пач доказали, что любая такая сеть с n точками имеет не более 1,428n линий.

 

 

Иррациональность постоянной Эйлера

 

Не существует готовой «замкнутой» формулы для суммы гармонического ряда

 

 

Более того, такой формулы, по всей вероятности, не существует. Однако существует прекрасная ее аппроксимация: по мере того как n увеличивается, Hn стремится к logn + γ. Здесь γ — постоянная Эйлера, численно равная примерно 0,5772156649. Эйлер вывел эту формулу в 1734 г., а Лоренцо Маскерони изучал постоянную в 1790 г. Ни тот, ни другой не использовали символ γ.

Постоянная Эйлера — одно из тех странных чисел, которые время от времени возникают в математике (вспомните π и e); у них нет красивого или простого выражения, они то и дело появляются в самых разных местах, но при этом складывается впечатление, что они существуют сами по себе. В главе 3 мы убедились, что и π, и e трансцендентны: они не являются решениями каких-либо алгебраических уравнений с целыми коэффициентами.

Быстрый переход