Изменить размер шрифта - +
Вероятно, именно такая судьба ждет некоторые из сегодняшних великих задач математики. Но я был бы удивлен, если бы в их число вошла гипотеза Римана, и поражен, если бы кто-то смог доказать ее неразрешимость. С другой стороны, проблема P/NP-алгоритмов вполне может оказаться неразрешимой или подпадать под какое-то другое формальное ограничение вида «это не может быть сделано, потому что…». Есть в этой задаче что-то, знаете ли, эдакое…

Подозреваю, что к концу XXI в. у нас все-таки будут доказательства гипотезы Римана, гипотезы Берча — Свиннертон-Дайера и гипотезы массовой щели, а также опровержение гипотезы Ходжа и регулярности решений уравнения Навье — Стокса в трех измерениях. Мне кажется, что задача P/NP-алгоритмов пока останется нерешенной, но падет где-нибудь в XXII в. Хотя понятно, что кто-нибудь завтра же опровергнет гипотезу Римана, а через неделю докажет, что P не совпадает с NP.

Но, конечно, безопаснее ограничиваться общими наблюдениями, потому что мы всегда можем поучиться у истории. Так что я почти уверен: к тому моменту, когда семь задач тысячелетия наконец решат, многие из них будут восприниматься как мелкие исторические курьезы. «О, когда-то это считалось важным?» Так произошло с некоторыми проблемами из списка Гильберта. Кроме того, можно быть уверенным, что через 50 лет появится несколько крупных областей математики, которых сегодня не существует даже в проекте. Тогда выяснится, что кое-какие базовые примеры и некоторые рудиментарные теоремы в этих областях известны уже давно, но никто не догадывался, что эти случайные кусочки смальты представляют собой фрагменты прекрасной мозаичной картины — глубокой и значительной новой области математики. В свое время так произошло с теорией групп, матричной алгеброй, фракталами и теорией хаоса. Не сомневаюсь, что это произойдет еще не раз, потому что это стандартный путь развития математики.

Существует две основные движущие силы возникновения новых областей. С одной стороны, их порождает внутренняя структура самой математики, а с другой — они являются ответом на новые вопросы о внешнем мире; часто оба фактора действуют одновременно. Как у Пуанкаре процесс решения задачи включал в себя три этапа — подготовку, созревание и озарение, — так и отношения между математикой и ее приложениями не сводятся к простой схеме: физика ставит вопрос, математика дает на него ответ, и дело с концом. На самом деле мы видим сложную систему обмена вопросами и идеями: новые достижения в математике служат стимулами для дальнейших экспериментов, наблюдений или теорий, а те, в свою очередь, мотивируют новые математические исследования. И каждый узел этой сети оказывается, при ближайшем рассмотрении, самостоятельной сетью того же типа, но меньших масштабов.

Окружающий мир стал гораздо обширнее и богаче, чем прежде. До недавнего времени основным внешним источником вдохновения для математики была физика. Некоторые другие области науки тоже играли свою роль: биология и социология стимулировали развитие теории вероятностей и статистики, а философия заметно влияла на математическую логику. В будущем нам предстоит увидеть, как математика начнет все более активно взаимодействовать с биологией, медициной, компьютерными науками, финансами, экономикой, социологией и, очень возможно, политикой, а также киноиндустрией и спортом. Я подозреваю, что некоторые из ближайших к нам по времени великих задач возникнут в биологии, поскольку с ней уже установилась прочная связь. Одна из тенденций — взрывной рост возможностей по сбору биологических и биохимических данных. Так, сегодня небольшие геномы можно секвенировать при помощи устройства размером с флешку (методом нанопорового анализа). Очень скоро то же можно будет проделывать и с большими геномами при помощи тех же или других технологий. В любом случае большая часть соответствующих технологий уже существует.

Быстрый переход