Изменить размер шрифта - +
В марте 1996 года Уайлс разделил с Ленглендсом премию Вольфа (не путать с премией Вольфскеля) размером в 100 000 долларов. Комитет по присуждению премии Вольфа признал, что доказательство Уайлса само по себе представляет собой выдающееся достижение, к тому же оно вдохнуло жизнь в амбициозную схему Ленглендса. Уайлс совершил прорыв, который может привести математику в новый золотой век.

После года сумятицы и неопределенности математическое сообщество могло, наконец, успокоиться. На каждом симпозиуме, коллоквиуме, на любой конференции одно заседание посвящалось доказательству Уайлса, а бостонские математики даже устроили соревнование: кто из них сумеет запечатлеть памятное событие, каким, несомненно, стало доказательство Уайлса, в шутливом стихотворении. Всеобщее внимание привлекли следующие вирши-лимерик:

Э.Хоув, Х.Ленстра, Д.Моултон.

 

Великие нерешенные проблемы

 

Уайлс сознавал, что, дав математике одно из величайших доказательств, он лишил ее одной из величайших загадок: «Люди говорили мне, что я отнял у них проблему, и просили дать им взамен что-нибудь еще. Математики впали в меланхолию. Мы утратили нечто такое, что было с нами на протяжении долгого времени и что многих из нас привлекло к математике. С математическими проблемами всегда так. Нам всегда необходимо находить новые проблемы, которые привлекли бы наше внимание».

Но хотя Уайлс действительно разгадал самую знаменитую математическую проблему, любителям трудных задач-головоломок не стоит терять надежду. Нерешенных проблем еще осталось превеликое множество. Многие из них, как и Великая теорема Ферма, уходят корнями в древнегреческую математику, понять их может любой школьник. Например, множество загадок и поныне связано с простыми числами. В главе 1 мы уже упоминали о том, что совершенным называется число, сумма делителей которого совпадает с самим числом. Например, 6 и 28 — совершенные числа, так как

1, 2, 3 делят 6, и 6 = 1 + 2 + 3,

1, 2, 4, 7, 14 делят 28, и 28 = 1 + 2 + 4 + 7 + 14.

Рене Декарт говорил, что «совершенные числа, подобно совершенным людям, встречаются весьма редко». Самое большое из известных совершенных чисел содержит в своей десятичной записи 130000 цифр и определяется по формуле

2<sup>216090</sup>·(2<sup>216091</sup> — 1).

Общее свойство всех известных совершенных чисел заключается в том, что они четны. Поэтому так и подмывает сказать, что все совершенные числа четны. Проблема, увы, пока не поддающаяся решению, заключается в том, чтобы доказать это утверждение.

Другая сложная проблема, связанная с совершенными числами, состоит в выяснении ответа на вопрос, можно ли исчерпать запас совершенных чисел за конечное число шагов. На протяжении веков многие математики, занимающиеся теорией чисел, пытались выяснить, конечно или бесконечно множество совершенных чисел, но всякий раз терпели неудачу. Всякому, кому удалось бы дать определенный ответ на этот вопрос, уготовано почетное место в истории математики.

Еще одна область богата древнейшими нерешенными проблемами — теория простых чисел. Последовательность простых чисел подчиняется какой-то плохо различимой закономерности, и простые числа живут по собственным правилам. Их сравнивают с сорной травой, случайным образом распределенной среди натуральных чисел. Перебирая одно за другим натуральные числа, можно набрести на области, богатые простыми числами, но, по неизвестной причине, другие области оказываются совершенно пустыми. Математики веками пытались разгадать закон, по которому распределены простые числа, и всякий раз терпели поражение. Возможно, никакого закона не существует, и распределение простых чисел случайно по самой своей природе. В этом случае математикам можно было бы порекомендовать заняться решением менее амбициозных проблем, связанных с простыми числами.

Например, две тысячи лет назад Евклид доказал, что запас простых чисел неисчерпаем (см.

Быстрый переход